Updates, Applications and Future Directions of Deep Learning for the Images Processing in the Field of Cranio-Maxillo-Facial Surgery.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Luca Michelutti, Alessandro Tel, Massimo Robiony, Lorenzo Marini, Daniele Tognetto, Edoardo Agosti, Tamara Ius, Caterina Gagliano, Marco Zeppieri
{"title":"Updates, Applications and Future Directions of Deep Learning for the Images Processing in the Field of Cranio-Maxillo-Facial Surgery.","authors":"Luca Michelutti, Alessandro Tel, Massimo Robiony, Lorenzo Marini, Daniele Tognetto, Edoardo Agosti, Tamara Ius, Caterina Gagliano, Marco Zeppieri","doi":"10.3390/bioengineering12060585","DOIUrl":null,"url":null,"abstract":"<p><p>The entry of artificial intelligence, in particular deep learning models, into the study of medical-clinical processes is revolutionizing the way of conceiving and seeing the future of medicine, offering new and promising perspectives in patient management. These models are proving to be excellent tools for the clinician through their great potential and capacity for processing clinical data, in particular radiological images. The processing and analysis of imaging data, such as CT scans or histological images, by these algorithms offers aid to clinicians for image segmentation and classification and to surgeons in the surgical planning of a delicate and complex operation. This study aims to analyze what the most frequently used models in the segmentation and classification of medical images are, to evaluate what the applications of these algorithms in maxillo-facial surgery are, and to explore what the future perspectives of the use of artificial intelligence in the processing of radiological data are, particularly in oncological fields. Future prospects are promising. Further development of deep learning algorithms capable of analyzing image sequences, integrating multimodal data, i.e., combining information from different sources, and developing human-machine interfaces to facilitate the integration of these tools with clinical reality are expected. In conclusion, these models have proven to be versatile and potentially effective tools on different types of data, from photographs of intraoral lesions to histopathological slides via MRI scans.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060585","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The entry of artificial intelligence, in particular deep learning models, into the study of medical-clinical processes is revolutionizing the way of conceiving and seeing the future of medicine, offering new and promising perspectives in patient management. These models are proving to be excellent tools for the clinician through their great potential and capacity for processing clinical data, in particular radiological images. The processing and analysis of imaging data, such as CT scans or histological images, by these algorithms offers aid to clinicians for image segmentation and classification and to surgeons in the surgical planning of a delicate and complex operation. This study aims to analyze what the most frequently used models in the segmentation and classification of medical images are, to evaluate what the applications of these algorithms in maxillo-facial surgery are, and to explore what the future perspectives of the use of artificial intelligence in the processing of radiological data are, particularly in oncological fields. Future prospects are promising. Further development of deep learning algorithms capable of analyzing image sequences, integrating multimodal data, i.e., combining information from different sources, and developing human-machine interfaces to facilitate the integration of these tools with clinical reality are expected. In conclusion, these models have proven to be versatile and potentially effective tools on different types of data, from photographs of intraoral lesions to histopathological slides via MRI scans.

深度学习在颅颌面外科图像处理中的最新进展、应用和未来方向。
人工智能,特别是深度学习模型,进入医学临床过程的研究,正在彻底改变构思和看待医学未来的方式,为患者管理提供新的和有前途的视角。这些模型通过其处理临床数据,特别是放射图像的巨大潜力和能力,被证明是临床医生的优秀工具。通过这些算法处理和分析成像数据,如CT扫描或组织学图像,可以帮助临床医生进行图像分割和分类,也可以帮助外科医生进行精细和复杂的手术计划。本研究旨在分析医学图像分割和分类中最常用的模型是什么,评估这些算法在颌面外科手术中的应用是什么,并探讨人工智能在放射数据处理中的应用前景,特别是在肿瘤学领域。未来的前景是光明的。期望进一步开发能够分析图像序列的深度学习算法,集成多模态数据,即组合来自不同来源的信息,以及开发人机界面以促进这些工具与临床现实的集成。总之,这些模型已被证明是一种通用的、潜在有效的工具,可用于不同类型的数据,从口腔内病变的照片到通过MRI扫描的组织病理学切片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信