Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Silvia Cometta, Dietmar Werner Hutmacher
{"title":"Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays.","authors":"Silvia Cometta, Dietmar Werner Hutmacher","doi":"10.3390/bioengineering12060660","DOIUrl":null,"url":null,"abstract":"<p><p>In this comprehensive study, we delve into the intricate binding properties of tannic acid (TA) and examine their dual role in the realm of biomaterial development. While TA's properties can enhance the functionality and performance of biomaterials, they also raise concerns regarding potential biases in in vitro biocompatibility assessments. We focus on the relevance and constraints of several widely employed cell viability assays, namely the DNA-based PicoGreen assay, the PrestoBlue assay, and the Live/Dead staining technique utilizing fluorescein diacetate (FDA) and propidium iodide (PI). We investigate how these assays perform when applied to TA-coated scaffolds and cell sheets. Through a detailed presentation of our experimental findings, we juxtapose them through a critical review of the existing literature, allowing us to identify and elucidate the limitations these assays face when assessing TA-based biomaterials. In doing so, we aim not only to enhance the understanding of these potential assay biases but also to provide actionable recommendations for accurately evaluating the biocompatibility of TA-modified substances. This dual approach, combining empirical research with literature analysis, offers vital insights for the research community, ensuring that the assessment of TA-coated biomaterials is scientifically sound and reproducible.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060660","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this comprehensive study, we delve into the intricate binding properties of tannic acid (TA) and examine their dual role in the realm of biomaterial development. While TA's properties can enhance the functionality and performance of biomaterials, they also raise concerns regarding potential biases in in vitro biocompatibility assessments. We focus on the relevance and constraints of several widely employed cell viability assays, namely the DNA-based PicoGreen assay, the PrestoBlue assay, and the Live/Dead staining technique utilizing fluorescein diacetate (FDA) and propidium iodide (PI). We investigate how these assays perform when applied to TA-coated scaffolds and cell sheets. Through a detailed presentation of our experimental findings, we juxtapose them through a critical review of the existing literature, allowing us to identify and elucidate the limitations these assays face when assessing TA-based biomaterials. In doing so, we aim not only to enhance the understanding of these potential assay biases but also to provide actionable recommendations for accurately evaluating the biocompatibility of TA-modified substances. This dual approach, combining empirical research with literature analysis, offers vital insights for the research community, ensuring that the assessment of TA-coated biomaterials is scientifically sound and reproducible.

评估单宁酸基生物材料的生物相容性:解决标准细胞毒性测定中的挑战。
在这项全面的研究中,我们深入研究了单宁酸(TA)复杂的结合特性,并研究了它们在生物材料开发领域的双重作用。虽然TA的特性可以增强生物材料的功能和性能,但它们也引起了对体外生物相容性评估的潜在偏差的担忧。我们专注于几种广泛应用的细胞活力测定方法的相关性和局限性,即基于dna的PicoGreen测定法、PrestoBlue测定法和利用双醋酸荧光素(FDA)和碘化丙啶(PI)的活/死染色技术。我们研究了这些检测在应用于ta涂层支架和细胞片时的表现。通过详细介绍我们的实验结果,我们通过对现有文献的批判性回顾并列它们,使我们能够识别和阐明这些分析在评估基于ta的生物材料时面临的局限性。在这样做的过程中,我们的目标不仅是加强对这些潜在分析偏差的理解,而且还为准确评估ta修饰物质的生物相容性提供可行的建议。这种将实证研究与文献分析相结合的双重方法为研究界提供了重要的见解,确保了ta涂层生物材料的评估在科学上是合理的和可重复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信