Joana Miranda, Raquel Pereira-Silva, João Guichard, Jorge Meneses, Andreia Neves Carreira, Daniela Seixas
{"title":"Artificial Intelligence Outperforms Physicians in General Medical Knowledge, Except in the Paediatrics Domain: A Cross-Sectional Study.","authors":"Joana Miranda, Raquel Pereira-Silva, João Guichard, Jorge Meneses, Andreia Neves Carreira, Daniela Seixas","doi":"10.3390/bioengineering12060653","DOIUrl":null,"url":null,"abstract":"<p><p>Generative artificial intelligence (genAI) shows promising results in clinical practice. This study compared a GPT-4-turbo virtual assistant with physicians from Italy, France, Spain, and Portugal on medical knowledge derived from national exams while analysing knowledge retention over time and domain-specific performance. Via a digital platform, 17,144 physicians provided 221,574 answers to 600 exam questions between December 2022 and February 2024. Physicians were stratified by years since graduation and specialty, and the assistant answered the same questions in each native language. Differences in proportions of correct answers were tested with binomial logistic regression (odds ratios, 95% CI) or Fisher's exact test (α = 0.05). The assistant outperformed physicians in all countries (72-96% vs. 46-62%; logistic regression, <i>p</i> < 0.001). Physicians also trailed the assistant across most knowledge domains (<i>p</i> < 0.001), except paediatrics (45% vs. 52%; Fisher, <i>p</i> = 0.60). Accuracy declined with seniority, falling 4-10% between the youngest and oldest cohorts (logistic regression, <i>p</i> < 0.001). Overall, genAI exceeds practising doctors on broad medical knowledge and may help counter knowledge attrition, though paediatrics remains a domain requiring targeted refinement.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060653","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Generative artificial intelligence (genAI) shows promising results in clinical practice. This study compared a GPT-4-turbo virtual assistant with physicians from Italy, France, Spain, and Portugal on medical knowledge derived from national exams while analysing knowledge retention over time and domain-specific performance. Via a digital platform, 17,144 physicians provided 221,574 answers to 600 exam questions between December 2022 and February 2024. Physicians were stratified by years since graduation and specialty, and the assistant answered the same questions in each native language. Differences in proportions of correct answers were tested with binomial logistic regression (odds ratios, 95% CI) or Fisher's exact test (α = 0.05). The assistant outperformed physicians in all countries (72-96% vs. 46-62%; logistic regression, p < 0.001). Physicians also trailed the assistant across most knowledge domains (p < 0.001), except paediatrics (45% vs. 52%; Fisher, p = 0.60). Accuracy declined with seniority, falling 4-10% between the youngest and oldest cohorts (logistic regression, p < 0.001). Overall, genAI exceeds practising doctors on broad medical knowledge and may help counter knowledge attrition, though paediatrics remains a domain requiring targeted refinement.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering