Chayut Bunterngchit, Laith H Baniata, Hayder Albayati, Mohammad H Baniata, Khalid Alharbi, Fanar Hamad Alshammari, Sangwoo Kang
{"title":"A Hybrid Convolutional-Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson's Disease Detection.","authors":"Chayut Bunterngchit, Laith H Baniata, Hayder Albayati, Mohammad H Baniata, Khalid Alharbi, Fanar Hamad Alshammari, Sangwoo Kang","doi":"10.3390/bioengineering12060583","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and cognitive impairments. Early detection is critical for effective intervention, but current diagnostic methods often lack accuracy and generalizability. Electroencephalography (EEG) offers a noninvasive means to monitor neural activity, revealing abnormal brain oscillations linked to PD pathology. However, deep learning models for EEG analysis frequently struggle to balance high accuracy with robust generalization across diverse patient populations. To overcome these challenges, this study proposes a convolutional transformer enhanced sequential model (CTESM), which integrates convolutional neural networks, transformer attention blocks, and long short-term memory layers to capture spatial, temporal, and sequential EEG features. Enhanced by biologically informed feature extraction techniques, including spectral power analysis, frequency band ratios, wavelet transforms, and statistical measures, the model was trained and evaluated on a publicly available EEG dataset comprising 31 participants (15 with PD and 16 healthy controls), recorded using 40 channels at a 500 Hz sampling rate. The CTESM achieved an exceptional classification accuracy of 99.7% and demonstrated strong generalization on independent test datasets. Rigorous evaluation across distinct training, validation, and testing phases confirmed the model's robustness, stability, and predictive precision. These results highlight the CTESM's potential for clinical deployment in early PD diagnosis, enabling timely therapeutic interventions and improved patient outcomes.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and cognitive impairments. Early detection is critical for effective intervention, but current diagnostic methods often lack accuracy and generalizability. Electroencephalography (EEG) offers a noninvasive means to monitor neural activity, revealing abnormal brain oscillations linked to PD pathology. However, deep learning models for EEG analysis frequently struggle to balance high accuracy with robust generalization across diverse patient populations. To overcome these challenges, this study proposes a convolutional transformer enhanced sequential model (CTESM), which integrates convolutional neural networks, transformer attention blocks, and long short-term memory layers to capture spatial, temporal, and sequential EEG features. Enhanced by biologically informed feature extraction techniques, including spectral power analysis, frequency band ratios, wavelet transforms, and statistical measures, the model was trained and evaluated on a publicly available EEG dataset comprising 31 participants (15 with PD and 16 healthy controls), recorded using 40 channels at a 500 Hz sampling rate. The CTESM achieved an exceptional classification accuracy of 99.7% and demonstrated strong generalization on independent test datasets. Rigorous evaluation across distinct training, validation, and testing phases confirmed the model's robustness, stability, and predictive precision. These results highlight the CTESM's potential for clinical deployment in early PD diagnosis, enabling timely therapeutic interventions and improved patient outcomes.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering