A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Shiva Maleki Varnosfaderani, Mohd Rizwan Shaikh, Mohamad Forouzanfar
{"title":"A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges.","authors":"Shiva Maleki Varnosfaderani, Mohd Rizwan Shaikh, Mohamad Forouzanfar","doi":"10.3390/bioengineering12060669","DOIUrl":null,"url":null,"abstract":"<p><p>Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers' health and status. The main goal is to reduce the number of traffic accidents caused by driver errors by monitoring various physiological parameters and devising appropriate actions to alert the driver or to take control of the vehicle. The research on this topic is in its early stages. While there have been several publications on this topic and industrial prototypes made by car manufacturers, a comprehensive and critical review of the current trends and future directions is missing. This review examines the current research and findings in in-vehicle physiological monitoring and suggests future directions and potential uses. Various physiological sensors, their potential locations, and the results they produce are demonstrated. The main challenges of in-vehicle biosensing, including unobtrusive sensing, vehicle vibration and driver movement cancellation, and privacy management, are discussed, and possible solutions are presented. The paper also reviews the current in-vehicle biosensing prototypes built by car manufacturers and other researchers. The reviewed methods and presented directions provide valuable insights into robust and accurate biosensing within vehicles for researchers in the field.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060669","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers' health and status. The main goal is to reduce the number of traffic accidents caused by driver errors by monitoring various physiological parameters and devising appropriate actions to alert the driver or to take control of the vehicle. The research on this topic is in its early stages. While there have been several publications on this topic and industrial prototypes made by car manufacturers, a comprehensive and critical review of the current trends and future directions is missing. This review examines the current research and findings in in-vehicle physiological monitoring and suggests future directions and potential uses. Various physiological sensors, their potential locations, and the results they produce are demonstrated. The main challenges of in-vehicle biosensing, including unobtrusive sensing, vehicle vibration and driver movement cancellation, and privacy management, are discussed, and possible solutions are presented. The paper also reviews the current in-vehicle biosensing prototypes built by car manufacturers and other researchers. The reviewed methods and presented directions provide valuable insights into robust and accurate biosensing within vehicles for researchers in the field.

智能车辆中不引人注目的生物传感:传感器、算法和集成挑战的综合综述。
不引人注目的车内测量和生理信号监测最近吸引了工业界和学术界的研究人员,作为一种创新的方法,可以提供有关驾驶员健康和状态的有价值的信息。主要目标是通过监测各种生理参数并设计适当的动作来提醒驾驶员或控制车辆,从而减少驾驶员失误造成的交通事故数量。关于这一课题的研究还处于初级阶段。虽然已经有一些关于这个主题的出版物和汽车制造商制造的工业原型,但对当前趋势和未来方向的全面和批判性审查是缺失的。本文综述了车载生理监测的研究现状,并对未来的发展方向和潜在用途进行了展望。各种生理传感器,他们的潜在位置,以及他们产生的结果进行了演示。讨论了车载生物传感的主要挑战,包括非突兀传感、车辆振动和驾驶员运动取消以及隐私管理,并提出了可能的解决方案。本文还回顾了目前由汽车制造商和其他研究人员制造的车载生物传感原型。综述的方法和提出的方向为该领域的研究人员提供了强大而准确的车辆生物传感的宝贵见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信