Sana Yasin, Muhammad Adeel, Umar Draz, Tariq Ali, Mohammad Hijji, Muhammad Ayaz, Ashraf M Marei
{"title":"A CNN-Transformer Fusion Model for Proactive Detection of Schizophrenia Relapse from EEG Signals.","authors":"Sana Yasin, Muhammad Adeel, Umar Draz, Tariq Ali, Mohammad Hijji, Muhammad Ayaz, Ashraf M Marei","doi":"10.3390/bioengineering12060641","DOIUrl":null,"url":null,"abstract":"<p><p>Proactively detecting schizophrenia relapse remains a critical challenge in psychiatric care, where traditional predictive models often fail to capture the complex neurophysiological and behavioral dynamics preceding recurrence. Existing methods typically rely on shallow architectures or unimodal data sources, resulting in limited sensitivity-particularly in the early stages of relapse. In this study, we propose a CNN-Transformer fusion model that leverages the complementary strengths of Convolutional Neural Networks (CNNs) and Transformer-based architectures to process electroencephalogram (EEG) signals enriched with clinical and sentiment-derived features. This hybrid framework enables joint spatial-temporal modeling of relapse indicators, allowing for a more nuanced and patient-specific analysis. Unlike previous approaches, our model incorporates a multi-resource data fusion pipeline, improving robustness, interpretability, and clinical relevance. Experimental evaluations demonstrate a superior prediction accuracy of 97%, with notable improvements in recall and F1-score compared to leading baselines. Moreover, the model significantly reduces false negatives, a crucial factor for timely therapeutic intervention. By addressing the limitations of unimodal and superficial prediction strategies, this framework lays the groundwork for scalable, real-world applications in continuous mental health monitoring and personalized relapse prevention.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060641","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proactively detecting schizophrenia relapse remains a critical challenge in psychiatric care, where traditional predictive models often fail to capture the complex neurophysiological and behavioral dynamics preceding recurrence. Existing methods typically rely on shallow architectures or unimodal data sources, resulting in limited sensitivity-particularly in the early stages of relapse. In this study, we propose a CNN-Transformer fusion model that leverages the complementary strengths of Convolutional Neural Networks (CNNs) and Transformer-based architectures to process electroencephalogram (EEG) signals enriched with clinical and sentiment-derived features. This hybrid framework enables joint spatial-temporal modeling of relapse indicators, allowing for a more nuanced and patient-specific analysis. Unlike previous approaches, our model incorporates a multi-resource data fusion pipeline, improving robustness, interpretability, and clinical relevance. Experimental evaluations demonstrate a superior prediction accuracy of 97%, with notable improvements in recall and F1-score compared to leading baselines. Moreover, the model significantly reduces false negatives, a crucial factor for timely therapeutic intervention. By addressing the limitations of unimodal and superficial prediction strategies, this framework lays the groundwork for scalable, real-world applications in continuous mental health monitoring and personalized relapse prevention.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering