Patricio Cumsille, Felipe Troncoso, Hermes Sandoval, Jesenia Acurio, Carlos Escudero
{"title":"A Changepoint Detection-Based General Methodology for Robust Signal Processing: An Application to Understand Preeclampsia's Mechanisms.","authors":"Patricio Cumsille, Felipe Troncoso, Hermes Sandoval, Jesenia Acurio, Carlos Escudero","doi":"10.3390/bioengineering12060675","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by illuminating the underlying mechanisms of preeclampsia, we develop a changepoint detection-based general and versatile methodology that can be applied to any experimental model, effectively addressing the challenges of high uncertainty produced by experimental interventions, intrinsic high variability, and rapidly and abruptly varying time dynamics in perfusion signals. This methodology provides a systematic and reliable approach for robust perfusion signal analysis. The main innovation of our methodology is a highly efficient automatic data processing system consisting of modular programming components. These components include a signal processing tool for optimal segmentation of perfusion signals by isolating their \"genuine\" vascular response to experimental interventions, and a novel and suitable normalization to evaluate this response concerning an experimental reference state, typically basal or pre-intervention. In this way, we can identify anomalies in an experimental group compared to a control group by disaggregating noise during the transitions just after experimental interventions. We have successfully applied our general methodology to perfusion signals measured from a preeclampsia-like syndrome model developed by our research group. Our findings revealed impaired brain perfusion in offspring from preeclampsia, particularly dysfunctional brain perfusion signals with inadequate perfusion signal vasoreactivity to thermal physical stimuli. This general methodology represents a significant step towards a systematic, accurate, and reliable approach to robust perfusion signals analysis across various experimental settings with diverse intervention protocols.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060675","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by illuminating the underlying mechanisms of preeclampsia, we develop a changepoint detection-based general and versatile methodology that can be applied to any experimental model, effectively addressing the challenges of high uncertainty produced by experimental interventions, intrinsic high variability, and rapidly and abruptly varying time dynamics in perfusion signals. This methodology provides a systematic and reliable approach for robust perfusion signal analysis. The main innovation of our methodology is a highly efficient automatic data processing system consisting of modular programming components. These components include a signal processing tool for optimal segmentation of perfusion signals by isolating their "genuine" vascular response to experimental interventions, and a novel and suitable normalization to evaluate this response concerning an experimental reference state, typically basal or pre-intervention. In this way, we can identify anomalies in an experimental group compared to a control group by disaggregating noise during the transitions just after experimental interventions. We have successfully applied our general methodology to perfusion signals measured from a preeclampsia-like syndrome model developed by our research group. Our findings revealed impaired brain perfusion in offspring from preeclampsia, particularly dysfunctional brain perfusion signals with inadequate perfusion signal vasoreactivity to thermal physical stimuli. This general methodology represents a significant step towards a systematic, accurate, and reliable approach to robust perfusion signals analysis across various experimental settings with diverse intervention protocols.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering