Estevan M Nieto, Edaena Lujan, Crystal A Mendoza, Yazbel Arriaga, Cecilia Fierro, Tan Tran, Lin-Ching Chang, Alvaro N Gurovich, Peter S Lum, Shashwati Geed
{"title":"Accelerometry and the Capacity-Performance Gap: Case Series Report in Upper-Extremity Motor Impairment Assessment Post-Stroke.","authors":"Estevan M Nieto, Edaena Lujan, Crystal A Mendoza, Yazbel Arriaga, Cecilia Fierro, Tan Tran, Lin-Ching Chang, Alvaro N Gurovich, Peter S Lum, Shashwati Geed","doi":"10.3390/bioengineering12060615","DOIUrl":null,"url":null,"abstract":"<p><p>This case series investigates whether traditional machine learning (ML) and convolutional neural network (CNN) models trained on wrist-worn accelerometry data collected in a laboratory setting can accurately predict real-world functional hand use in individuals with chronic stroke. Participants (N = 4) with neuroimaging-confirmed chronic stroke completed matched activity scripts-comprising instrumental and basic activities of daily living-in-lab and at-home. Participants wore ActiGraph CenterPoint Insight watches on the impaired and unimpaired wrists; concurrent video recordings were collected in both environments. Frame-by-frame annotations of the video, guided by the FAABOS scale (functional, non-functional, unknown), served as the ground truth. The results revealed a consistent capacity-performance gap: participants used their impaired hand more in-lab than at-home, with the largest discrepancies in patients with moderate to severe impairment. Random forest ML models trained on in-lab accelerometry accurately classified at-home hand use, with the highest performance in mildly and severely impaired limbs (accuracy = 0.80-0.90) and relatively lower performance (accuracy = 0.62) in moderately impaired limbs. CNN models showed comparable accuracy to random forest classifiers. These pilot findings demonstrate the feasibility of using lab-trained ML models to monitor real-world hand use and identify emerging patterns of learned non-use-enabling timely, targeted interventions to promote recovery in outpatient stroke rehabilitation.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060615","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This case series investigates whether traditional machine learning (ML) and convolutional neural network (CNN) models trained on wrist-worn accelerometry data collected in a laboratory setting can accurately predict real-world functional hand use in individuals with chronic stroke. Participants (N = 4) with neuroimaging-confirmed chronic stroke completed matched activity scripts-comprising instrumental and basic activities of daily living-in-lab and at-home. Participants wore ActiGraph CenterPoint Insight watches on the impaired and unimpaired wrists; concurrent video recordings were collected in both environments. Frame-by-frame annotations of the video, guided by the FAABOS scale (functional, non-functional, unknown), served as the ground truth. The results revealed a consistent capacity-performance gap: participants used their impaired hand more in-lab than at-home, with the largest discrepancies in patients with moderate to severe impairment. Random forest ML models trained on in-lab accelerometry accurately classified at-home hand use, with the highest performance in mildly and severely impaired limbs (accuracy = 0.80-0.90) and relatively lower performance (accuracy = 0.62) in moderately impaired limbs. CNN models showed comparable accuracy to random forest classifiers. These pilot findings demonstrate the feasibility of using lab-trained ML models to monitor real-world hand use and identify emerging patterns of learned non-use-enabling timely, targeted interventions to promote recovery in outpatient stroke rehabilitation.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering