{"title":"A Hybrid Soft Sensor Approach Combining Partial Least-Squares Regression and an Unscented Kalman Filter for State Estimation in Bioprocesses.","authors":"Lucas Hermann, Andreas Kremling","doi":"10.3390/bioengineering12060654","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine (L-phe) production process were carried out using a recombinant <i>Escherichia coli</i> strain under varying inducer concentrations. The available online process variables from the L-phe production process were used to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions were then incorporated as measurements into an unscented Kalman filter (UKF). The filter uses a coarse-grained model as a state estimator, which, in addition to extracellular variables, also provides information on intracellular states. The results of PLSR showed very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and L-tyr and poor performance for acetate concentrations. In combination with the UKF, the estimation of the L-phe concentrations was greatly improved compared to the CGM, whereas further improvement is still needed for the remaining state variables.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060654","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine (L-phe) production process were carried out using a recombinant Escherichia coli strain under varying inducer concentrations. The available online process variables from the L-phe production process were used to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions were then incorporated as measurements into an unscented Kalman filter (UKF). The filter uses a coarse-grained model as a state estimator, which, in addition to extracellular variables, also provides information on intracellular states. The results of PLSR showed very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and L-tyr and poor performance for acetate concentrations. In combination with the UKF, the estimation of the L-phe concentrations was greatly improved compared to the CGM, whereas further improvement is still needed for the remaining state variables.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering