Toward Transparent AI-Enabled Patient Selection in Cosmetic Surgery by Integrating Reasoning and Medical LLMs.

IF 2 3区 医学 Q2 SURGERY
Partha Pratim Ray
{"title":"Toward Transparent AI-Enabled Patient Selection in Cosmetic Surgery by Integrating Reasoning and Medical LLMs.","authors":"Partha Pratim Ray","doi":"10.1007/s00266-025-05038-w","DOIUrl":null,"url":null,"abstract":"<p><p>Existing AI solutions-like the XGBoost tool by Li et al.-show potential for preoperative screening but rely on fixed questionnaires and opaque feature weighting. We introduce a hybrid framework that combines reasoning LLMs (OpenAI o3, DeepSeek R1, Google Gemini 2.5, Anthropic Claude 3.7 Sonnet) with specialty medical models (Baichuan-M1, Zhipu AI GLM-4-9B-Chat, OpenBioLLM-Llama-70B, MedLLaMA3-v20, Med-PaLM 2, SurgeryLLM). Patient inputs-structured and free-text-are ingested via a secure mobile app and processed through a retrieval-augmented pipeline. Reasoning LLMs expose chain-of-thought steps for full transparency, while medical LLMs validate each risk factor against clinical guidelines. An ensemble then delivers a composite suitability score, complete with an audit trail of data points and citations. We address key hurdles-model recency, hallucination control, data privacy, and fairness-and recommend a medical-device regulatory approach with independent validation, ongoing bias monitoring, and co-design with multidisciplinary stakeholders.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .</p>","PeriodicalId":7609,"journal":{"name":"Aesthetic Plastic Surgery","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aesthetic Plastic Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00266-025-05038-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Existing AI solutions-like the XGBoost tool by Li et al.-show potential for preoperative screening but rely on fixed questionnaires and opaque feature weighting. We introduce a hybrid framework that combines reasoning LLMs (OpenAI o3, DeepSeek R1, Google Gemini 2.5, Anthropic Claude 3.7 Sonnet) with specialty medical models (Baichuan-M1, Zhipu AI GLM-4-9B-Chat, OpenBioLLM-Llama-70B, MedLLaMA3-v20, Med-PaLM 2, SurgeryLLM). Patient inputs-structured and free-text-are ingested via a secure mobile app and processed through a retrieval-augmented pipeline. Reasoning LLMs expose chain-of-thought steps for full transparency, while medical LLMs validate each risk factor against clinical guidelines. An ensemble then delivers a composite suitability score, complete with an audit trail of data points and citations. We address key hurdles-model recency, hallucination control, data privacy, and fairness-and recommend a medical-device regulatory approach with independent validation, ongoing bias monitoring, and co-design with multidisciplinary stakeholders.Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

通过整合推理和医学法学硕士,在整容手术中实现透明的人工智能患者选择。
现有的人工智能解决方案(如Li等人的XGBoost工具)显示出术前筛查的潜力,但依赖于固定的问卷调查和不透明的特征权重。我们引入了一个混合框架,将推理llm (OpenAI o3, DeepSeek R1,谷歌Gemini 2.5, Anthropic Claude 3.7 Sonnet)与专业医学模型(bai川- m1,智普AI GLM-4-9B-Chat, OpenBioLLM-Llama-70B, MedLLaMA3-v20, Med-PaLM 2, surgical lm)结合在一起。患者输入的结构化和自由文本通过安全的移动应用程序被摄取,并通过检索增强管道进行处理。推理法学硕士揭示了完全透明的思维链步骤,而医学法学硕士根据临床指南验证每个风险因素。然后,集成提供一个组合适用性评分,并完成对数据点和引用的审计跟踪。我们解决了关键的障碍——模型近期性、幻觉控制、数据隐私和公平性,并推荐了一种具有独立验证、持续偏见监测和与多学科利益相关者共同设计的医疗器械监管方法。证据等级V本刊要求作者为每篇文章指定证据等级。有关这些循证医学评级的完整描述,请参阅目录或在线作者说明www.springer.com/00266。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
25.00%
发文量
479
审稿时长
3 months
期刊介绍: Aesthetic Plastic Surgery is a publication of the International Society of Aesthetic Plastic Surgery and the official journal of the European Association of Societies of Aesthetic Plastic Surgery (EASAPS), Società Italiana di Chirurgia Plastica Ricostruttiva ed Estetica (SICPRE), Vereinigung der Deutschen Aesthetisch Plastischen Chirurgen (VDAPC), the Romanian Aesthetic Surgery Society (RASS), Asociación Española de Cirugía Estética Plástica (AECEP), La Sociedad Argentina de Cirugía Plástica, Estética y Reparadora (SACPER), the Rhinoplasty Society of Europe (RSE), the Iranian Society of Plastic and Aesthetic Surgeons (ISPAS), the Singapore Association of Plastic Surgeons (SAPS), the Australasian Society of Aesthetic Plastic Surgeons (ASAPS), the Egyptian Society of Plastic and Reconstructive Surgeons (ESPRS), and the Sociedad Chilena de Cirugía Plástica, Reconstructiva y Estética (SCCP). Aesthetic Plastic Surgery provides a forum for original articles advancing the art of aesthetic plastic surgery. Many describe surgical craftsmanship; others deal with complications in surgical procedures and methods by which to treat or avoid them. Coverage includes "second thoughts" on established techniques, which might be abandoned, modified, or improved. Also included are case histories; improvements in surgical instruments, pharmaceuticals, and operating room equipment; and discussions of problems such as the role of psychosocial factors in the doctor-patient and the patient-public interrelationships. Aesthetic Plastic Surgery is covered in Current Contents/Clinical Medicine, SciSearch, Research Alert, Index Medicus-Medline, and Excerpta Medica/Embase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信