Qing Li, Dao-Ping Wang, Ting Zhong, Ai-Ling Ling-Hu, Jia-Lin Chen, Fang Luo, Feng Zhang, Ming-Zhi Su, Ying Yang, Yan-Hua Fan
{"title":"Discovery of FLF-15 as a novel selective inhibitor of ADAM17 to prevent hepatocellular carcinoma metastasis.","authors":"Qing Li, Dao-Ping Wang, Ting Zhong, Ai-Ling Ling-Hu, Jia-Lin Chen, Fang Luo, Feng Zhang, Ming-Zhi Su, Ying Yang, Yan-Hua Fan","doi":"10.1007/s11030-025-11275-7","DOIUrl":null,"url":null,"abstract":"<p><p>The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to its high metastatic properties. Hence, metastasis inhibition might provide a reliable strategy for HCC treatment. As its pivotal role in the tumor cell proliferation, survival and metastasis, a disintegrin and metalloproteinase 17 (ADAM17) has become an attractive target for cancer therapy. Nevertheless, the role of ADAM17 in HCC metastasis and its underlying mechanisms remain enigmatic. In the present study, we discovered a novel ADAM17 inhibitor FLF-15, with an IC<sub>50</sub> value of 10.43 nM. Further mechanistic studies showed that FLF-15 inhibits HCC migration and invasion in vitro and in vivo mainly by reducing interleukin-6 receptor (IL-6R) shedding, which inhibits IL-6 trans-signaling, while also leading to a reduction in IL-6 levels and downregulation of IL-6 classic-signaling. Furthermore, we revealed an overlapping but distinct biological effects of IL-6 classic and trans-signaling in HCC. Specifically, JAK2/STAT3 and ERK1/2 signaling can be stimulated by both IL-6 classic and trans-signaling pathway. However, AKT appears to be only activated by IL-6 trans-signaling pathway, suggesting its essential role for FLF-15 induced metastasis suppression in HCC. Taken together, our study identified FLF-15 as a novel ADAM17 inhibitor and elucidated its underlying mechanism of HCC metastasis suppression. These findings indicated FLF-15 might be a promising candidate for the development of HCC therapeutic agents.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11275-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to its high metastatic properties. Hence, metastasis inhibition might provide a reliable strategy for HCC treatment. As its pivotal role in the tumor cell proliferation, survival and metastasis, a disintegrin and metalloproteinase 17 (ADAM17) has become an attractive target for cancer therapy. Nevertheless, the role of ADAM17 in HCC metastasis and its underlying mechanisms remain enigmatic. In the present study, we discovered a novel ADAM17 inhibitor FLF-15, with an IC50 value of 10.43 nM. Further mechanistic studies showed that FLF-15 inhibits HCC migration and invasion in vitro and in vivo mainly by reducing interleukin-6 receptor (IL-6R) shedding, which inhibits IL-6 trans-signaling, while also leading to a reduction in IL-6 levels and downregulation of IL-6 classic-signaling. Furthermore, we revealed an overlapping but distinct biological effects of IL-6 classic and trans-signaling in HCC. Specifically, JAK2/STAT3 and ERK1/2 signaling can be stimulated by both IL-6 classic and trans-signaling pathway. However, AKT appears to be only activated by IL-6 trans-signaling pathway, suggesting its essential role for FLF-15 induced metastasis suppression in HCC. Taken together, our study identified FLF-15 as a novel ADAM17 inhibitor and elucidated its underlying mechanism of HCC metastasis suppression. These findings indicated FLF-15 might be a promising candidate for the development of HCC therapeutic agents.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;