Patrick Warfield-McAlpine, David F Fletcher, Fiona Zhang, Kiao Inthavong
{"title":"Increasing airflow ventilation in a nasal maxillary ostium using optimised shape and pulsating flows.","authors":"Patrick Warfield-McAlpine, David F Fletcher, Fiona Zhang, Kiao Inthavong","doi":"10.1007/s10237-025-01971-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ventilation of the maxillary sinus is essential for regulating pressure, preventing infection and providing mucous to the nasal anatomy. During infection, the pathway between the sinus and the nasal airway (ostia) can become inflamed and restrict ventilation. Surgery is often required to restore airflow. The current surgical standard involves the widening of the ostium. Although this restores fluid flow, it has been linked to post-surgical sequelae. This study examined the effects of pulsating flow and geometric modifications on airflow distribution in a T-junction model analogous to a nasal maxillary ostium. A circular T-junction with variable anterior and posterior radius of curvature ( <math><msub><mi>R</mi> <mi>c</mi></msub> </math> ) was used to simulate airflow through the nasal maxillary ostium, investigating flow behaviour under oscillatory inlet velocities at frequencies of 30, 45, 60, and 75 Hz. Computational fluid dynamics (CFD) simulations assessed how flow distribution through the nasal cavity and maxillary ostium (represented by the x- and y-branches) is affected by curvature and oscillatory frequency, focusing on implications for respiratory airflow, particle delivery and inhalation toxicology. Results indicated that increasing the anterior <math><msub><mi>R</mi> <mi>c</mi></msub> </math> enhanced airflow into the y-branch (analogous to the maxillary ostium), while posterior curvature had minimal impact. Higher oscillatory frequencies increased reverse flow, which may improve ventilation but could interfere with consistent drug delivery. These insights are valuable for optimising respiratory therapies and inhalation toxicology.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01971-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ventilation of the maxillary sinus is essential for regulating pressure, preventing infection and providing mucous to the nasal anatomy. During infection, the pathway between the sinus and the nasal airway (ostia) can become inflamed and restrict ventilation. Surgery is often required to restore airflow. The current surgical standard involves the widening of the ostium. Although this restores fluid flow, it has been linked to post-surgical sequelae. This study examined the effects of pulsating flow and geometric modifications on airflow distribution in a T-junction model analogous to a nasal maxillary ostium. A circular T-junction with variable anterior and posterior radius of curvature ( ) was used to simulate airflow through the nasal maxillary ostium, investigating flow behaviour under oscillatory inlet velocities at frequencies of 30, 45, 60, and 75 Hz. Computational fluid dynamics (CFD) simulations assessed how flow distribution through the nasal cavity and maxillary ostium (represented by the x- and y-branches) is affected by curvature and oscillatory frequency, focusing on implications for respiratory airflow, particle delivery and inhalation toxicology. Results indicated that increasing the anterior enhanced airflow into the y-branch (analogous to the maxillary ostium), while posterior curvature had minimal impact. Higher oscillatory frequencies increased reverse flow, which may improve ventilation but could interfere with consistent drug delivery. These insights are valuable for optimising respiratory therapies and inhalation toxicology.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.