Synergistic of Nitrogen Cross-Linking Modification, Fiber Body Preparation, and the Incorporation of Covalent Organic Framework (COF) Result in a Considerable Enhancement of Iodine Capture by Lignin.
Jingyu Xu, Jinghui Zhou, Xiangli Li, Boyu Du, Jun Chen, Shuangping Xu, Xing Wang
{"title":"Synergistic of Nitrogen Cross-Linking Modification, Fiber Body Preparation, and the Incorporation of Covalent Organic Framework (COF) Result in a Considerable Enhancement of Iodine Capture by Lignin.","authors":"Jingyu Xu, Jinghui Zhou, Xiangli Li, Boyu Du, Jun Chen, Shuangping Xu, Xing Wang","doi":"10.1021/acs.biomac.5c00517","DOIUrl":null,"url":null,"abstract":"<p><p>To fully leverage the potential of lignin for capturing radioactive iodine, this study first involved cross-linking lignin using the nitrogen-rich cross-linking agent diethylenetriamine to obtain a modified product. Subsequently, we employed electrospinning technology to transform the modified product into a fibrous, thereby enhancing lignin's solvent stability and broadening its application scope. Notably, we introduced COF growth sites, <i>para</i>-phenylenediamine (Pa), into the spinning solution. Finally, the Pa-containing nanofibers were reacted with the COF growth ligand 1,3,5-tri(4-formylphenyl)benzene. This reaction facilitated the self-growth of TFB-DB COF on the fiber surface, ultimately yielding lignin nanofibers embedded with TFB-DB COF (L/TFP(X)NF). L/TFP(X)NF is regarded as a reusable iodine-capturing material. L/TFP(1.2)NF exhibited the highest performance, capturing approximately 475.0 mg/g, 4451.7 mg/g and 2191.2 mg/g of iodine in steam, <i>n</i>-hexane solution and aqueous solution, respectively. This study significantly enhanced the iodine capture efficiency of lignin through the synergistic effects of nitrogen cross-linking modification, fiber preparation, and COFs.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00517","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To fully leverage the potential of lignin for capturing radioactive iodine, this study first involved cross-linking lignin using the nitrogen-rich cross-linking agent diethylenetriamine to obtain a modified product. Subsequently, we employed electrospinning technology to transform the modified product into a fibrous, thereby enhancing lignin's solvent stability and broadening its application scope. Notably, we introduced COF growth sites, para-phenylenediamine (Pa), into the spinning solution. Finally, the Pa-containing nanofibers were reacted with the COF growth ligand 1,3,5-tri(4-formylphenyl)benzene. This reaction facilitated the self-growth of TFB-DB COF on the fiber surface, ultimately yielding lignin nanofibers embedded with TFB-DB COF (L/TFP(X)NF). L/TFP(X)NF is regarded as a reusable iodine-capturing material. L/TFP(1.2)NF exhibited the highest performance, capturing approximately 475.0 mg/g, 4451.7 mg/g and 2191.2 mg/g of iodine in steam, n-hexane solution and aqueous solution, respectively. This study significantly enhanced the iodine capture efficiency of lignin through the synergistic effects of nitrogen cross-linking modification, fiber preparation, and COFs.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.