Deciphering Probabilistic Species Interaction Networks

IF 7.9 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2025-06-26 DOI:10.1111/ele.70161
Francis Banville, Tanya Strydom, Penelope S. A. Blyth, Chris Brimacombe, Michael D. Catchen, Gabriel Dansereau, Gracielle Higino, Thomas Malpas, Hana Mayall, Kari Norman, Dominique Gravel, Timothée Poisot
{"title":"Deciphering Probabilistic Species Interaction Networks","authors":"Francis Banville,&nbsp;Tanya Strydom,&nbsp;Penelope S. A. Blyth,&nbsp;Chris Brimacombe,&nbsp;Michael D. Catchen,&nbsp;Gabriel Dansereau,&nbsp;Gracielle Higino,&nbsp;Thomas Malpas,&nbsp;Hana Mayall,&nbsp;Kari Norman,&nbsp;Dominique Gravel,&nbsp;Timothée Poisot","doi":"10.1111/ele.70161","DOIUrl":null,"url":null,"abstract":"<p>Representing species interactions probabilistically as opposed to deterministically conveys uncertainties in our knowledge of interactions. The sources of uncertainty captured by interaction probabilities depend on the method used to evaluate them: uncertainty of predictive models, subjective assessment of experts, or empirical measurement of interaction spatiotemporal variability. However, guidelines for the estimation and documentation of probabilistic interaction data are lacking. This is concerning because our understanding of interaction probabilities depend on their sometimes elusive definition and uncertainty sources. We review how probabilistic interactions are defined at different spatial scales. These definitions are based on the distinction between the realisation of an interaction at a specific time and space (local networks) and its biological or ecological feasibility (metaweb). Using host–parasite interactions in Europe, we illustrate how these two network representations differ in their statistical properties, specifically: how local networks and metawebs differ in their spatial and temporal scaling of interactions. We present two approaches to inferring binary interactions from probabilistic ones that account for these differences and show that systematic biases arise when directly inferring local networks from metawebs. Our results underscore the importance of more rigorous descriptions of probabilistic species interactions that specify their conditional variables and uncertainty sources.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 6","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70161","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70161","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Representing species interactions probabilistically as opposed to deterministically conveys uncertainties in our knowledge of interactions. The sources of uncertainty captured by interaction probabilities depend on the method used to evaluate them: uncertainty of predictive models, subjective assessment of experts, or empirical measurement of interaction spatiotemporal variability. However, guidelines for the estimation and documentation of probabilistic interaction data are lacking. This is concerning because our understanding of interaction probabilities depend on their sometimes elusive definition and uncertainty sources. We review how probabilistic interactions are defined at different spatial scales. These definitions are based on the distinction between the realisation of an interaction at a specific time and space (local networks) and its biological or ecological feasibility (metaweb). Using host–parasite interactions in Europe, we illustrate how these two network representations differ in their statistical properties, specifically: how local networks and metawebs differ in their spatial and temporal scaling of interactions. We present two approaches to inferring binary interactions from probabilistic ones that account for these differences and show that systematic biases arise when directly inferring local networks from metawebs. Our results underscore the importance of more rigorous descriptions of probabilistic species interactions that specify their conditional variables and uncertainty sources.

Abstract Image

破译概率物种相互作用网络
以概率的方式表示物种间的相互作用,而不是以确定性的方式表达我们对相互作用知识的不确定性。相互作用概率捕获的不确定性的来源取决于用来评估它们的方法:预测模型的不确定性,专家的主观评估,或相互作用时空变异性的经验测量。然而,缺乏估计和记录概率交互数据的指导方针。这是令人担忧的,因为我们对相互作用概率的理解依赖于它们有时难以捉摸的定义和不确定性来源。我们回顾了概率相互作用是如何在不同的空间尺度上定义的。这些定义是基于在特定时间和空间(本地网络)实现交互及其生物或生态可行性(元网络)之间的区别。利用欧洲的宿主-寄生虫相互作用,我们说明了这两种网络表征在其统计特性上的差异,特别是:本地网络和元网络在相互作用的空间和时间尺度上的差异。我们提出了两种从解释这些差异的概率相互作用中推断二元相互作用的方法,并表明当直接从元网络推断局部网络时,会产生系统偏差。我们的结果强调了更严格地描述概率物种相互作用的重要性,这些相互作用指定了它们的条件变量和不确定性来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信