{"title":"Disturbance Observer Based Adaptive Control Scheme for Synchronization of Fractional Order Chaotic Systems With Input Delay","authors":"Mehran Derakhshannia, Seyyed Sajjad Moosapour, Saleh Mobayen","doi":"10.1049/cth2.70037","DOIUrl":null,"url":null,"abstract":"<p>In recent years, considerable attention has been attracted to the synchronization of chaotic systems due to their important applications. However, fractional order non-linear chaotic systems face critical challenges, particularly from input delays and external disturbances in practical applications. In this paper, a robust synchronization method based on state prediction is introduced to address these challenges. First, a novel adaptive disturbance observer for fractional order systems is proposed, ensuring that disturbance estimation is achieved within an arbitrary time. The effects of disturbances are mitigated by this observer, which plays a crucial role in synchronization scheme design. Second, an arbitrary time exponential sliding mode controller that integrates state prediction and the disturbance observer is presented to handle input delay in fractional chaotic systems subjected to external disturbances. Third, a control scheme incorporating state prediction and sliding mode control is developed to address chaos synchronization for fractional systems with time varying input delays and disturbances. Additionally, an upper bound for input delay is established, demonstrating that if the delay remains below this threshold, the synchronization error is constrained. The efficacy and practical applicability of the proposed synchronization scheme are confirmed through simulation studies and experimental validation on a real-time Speedgoat machine.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70037","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, considerable attention has been attracted to the synchronization of chaotic systems due to their important applications. However, fractional order non-linear chaotic systems face critical challenges, particularly from input delays and external disturbances in practical applications. In this paper, a robust synchronization method based on state prediction is introduced to address these challenges. First, a novel adaptive disturbance observer for fractional order systems is proposed, ensuring that disturbance estimation is achieved within an arbitrary time. The effects of disturbances are mitigated by this observer, which plays a crucial role in synchronization scheme design. Second, an arbitrary time exponential sliding mode controller that integrates state prediction and the disturbance observer is presented to handle input delay in fractional chaotic systems subjected to external disturbances. Third, a control scheme incorporating state prediction and sliding mode control is developed to address chaos synchronization for fractional systems with time varying input delays and disturbances. Additionally, an upper bound for input delay is established, demonstrating that if the delay remains below this threshold, the synchronization error is constrained. The efficacy and practical applicability of the proposed synchronization scheme are confirmed through simulation studies and experimental validation on a real-time Speedgoat machine.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.