Disturbance Observer Based Adaptive Control Scheme for Synchronization of Fractional Order Chaotic Systems With Input Delay

IF 2.3 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Mehran Derakhshannia, Seyyed Sajjad Moosapour, Saleh Mobayen
{"title":"Disturbance Observer Based Adaptive Control Scheme for Synchronization of Fractional Order Chaotic Systems With Input Delay","authors":"Mehran Derakhshannia,&nbsp;Seyyed Sajjad Moosapour,&nbsp;Saleh Mobayen","doi":"10.1049/cth2.70037","DOIUrl":null,"url":null,"abstract":"<p>In recent years, considerable attention has been attracted to the synchronization of chaotic systems due to their important applications. However, fractional order non-linear chaotic systems face critical challenges, particularly from input delays and external disturbances in practical applications. In this paper, a robust synchronization method based on state prediction is introduced to address these challenges. First, a novel adaptive disturbance observer for fractional order systems is proposed, ensuring that disturbance estimation is achieved within an arbitrary time. The effects of disturbances are mitigated by this observer, which plays a crucial role in synchronization scheme design. Second, an arbitrary time exponential sliding mode controller that integrates state prediction and the disturbance observer is presented to handle input delay in fractional chaotic systems subjected to external disturbances. Third, a control scheme incorporating state prediction and sliding mode control is developed to address chaos synchronization for fractional systems with time varying input delays and disturbances. Additionally, an upper bound for input delay is established, demonstrating that if the delay remains below this threshold, the synchronization error is constrained. The efficacy and practical applicability of the proposed synchronization scheme are confirmed through simulation studies and experimental validation on a real-time Speedgoat machine.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70037","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, considerable attention has been attracted to the synchronization of chaotic systems due to their important applications. However, fractional order non-linear chaotic systems face critical challenges, particularly from input delays and external disturbances in practical applications. In this paper, a robust synchronization method based on state prediction is introduced to address these challenges. First, a novel adaptive disturbance observer for fractional order systems is proposed, ensuring that disturbance estimation is achieved within an arbitrary time. The effects of disturbances are mitigated by this observer, which plays a crucial role in synchronization scheme design. Second, an arbitrary time exponential sliding mode controller that integrates state prediction and the disturbance observer is presented to handle input delay in fractional chaotic systems subjected to external disturbances. Third, a control scheme incorporating state prediction and sliding mode control is developed to address chaos synchronization for fractional systems with time varying input delays and disturbances. Additionally, an upper bound for input delay is established, demonstrating that if the delay remains below this threshold, the synchronization error is constrained. The efficacy and practical applicability of the proposed synchronization scheme are confirmed through simulation studies and experimental validation on a real-time Speedgoat machine.

Abstract Image

基于扰动观测器的输入延迟分数阶混沌系统同步自适应控制方案
近年来,混沌系统的同步问题由于其重要的应用而引起了人们的广泛关注。然而,分数阶非线性混沌系统在实际应用中面临着严峻的挑战,特别是来自输入延迟和外部干扰。本文提出了一种基于状态预测的鲁棒同步方法来解决这些问题。首先,提出了一种新的分数阶系统自适应干扰观测器,确保在任意时间内实现干扰估计。该观测器在同步方案设计中起着至关重要的作用。其次,提出了一种集成状态预测和干扰观测器的任意时间指数滑模控制器,用于处理受外部干扰的分数阶混沌系统的输入延迟。第三,提出了一种结合状态预测和滑模控制的控制方案,以解决具有时变输入延迟和干扰的分数阶系统的混沌同步问题。此外,建立了输入延迟的上界,表明如果延迟保持在该阈值以下,则同步误差受到约束。通过仿真研究和在一台实时Speedgoat机器上的实验验证,验证了所提同步方案的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信