Rob C. Johns, S. Edwards, D. T. Quiring, G. Moreau, M. Stastny
{"title":"How much additive mortality is needed to suppress an outbreak?—A neglected question in forest insect pest management","authors":"Rob C. Johns, S. Edwards, D. T. Quiring, G. Moreau, M. Stastny","doi":"10.1111/aab.70003","DOIUrl":null,"url":null,"abstract":"<p>The concepts of compensation and additive mortality form the ecological basis for understanding animal population responses to exploitation by humans. In the context of pest management, compensation is a density-dependent response that allows populations to offset control-related mortality, often via increased survival or reinvasion. Additive mortality, in contrast, accrues when a population's compensatory capacity is insufficient to offset losses, resulting in a net reduction in population size or growth rate. These concepts are rarely considered in forest insect pest management, which tends to emphasise short-term plant protection over long-term population control. We used published life table data for a major native forest insect defoliator, the spruce budworm (<i>Choristoneura fumiferana</i> [Lepidoptera: Tortricidae]) to simulate the amount of additive mortality required to suppress an outbreak. Simulations also assessed how the failure to account for different compensatory responses could hinder successful control. Our results suggest that only relatively modest amounts of additive mortality (perhaps as low as approximately 8%–18%) may be needed to stop spruce budworm from outbreaking, with immigration being the strongest potential compensatory hindrance to outbreak suppression. Many of the compensatory responses that thwarted outbreak suppression in the past (e.g., low detection efficiency, immigration, indiscriminate killing of predators and parasitoids) have contemporary solutions that could increase additive mortality and thereby enhance the feasibility of population control strategies for native forest insect pests. Our results suggest that some native forest insect pests may require relatively little additive mortality to suppress outbreaks if compensation-limiting strategies are used. Incorporating theoretical and strategic frameworks used in vertebrate population management could advance the development of native insect population control programmes.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"187 1","pages":"111-120"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aab.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.70003","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The concepts of compensation and additive mortality form the ecological basis for understanding animal population responses to exploitation by humans. In the context of pest management, compensation is a density-dependent response that allows populations to offset control-related mortality, often via increased survival or reinvasion. Additive mortality, in contrast, accrues when a population's compensatory capacity is insufficient to offset losses, resulting in a net reduction in population size or growth rate. These concepts are rarely considered in forest insect pest management, which tends to emphasise short-term plant protection over long-term population control. We used published life table data for a major native forest insect defoliator, the spruce budworm (Choristoneura fumiferana [Lepidoptera: Tortricidae]) to simulate the amount of additive mortality required to suppress an outbreak. Simulations also assessed how the failure to account for different compensatory responses could hinder successful control. Our results suggest that only relatively modest amounts of additive mortality (perhaps as low as approximately 8%–18%) may be needed to stop spruce budworm from outbreaking, with immigration being the strongest potential compensatory hindrance to outbreak suppression. Many of the compensatory responses that thwarted outbreak suppression in the past (e.g., low detection efficiency, immigration, indiscriminate killing of predators and parasitoids) have contemporary solutions that could increase additive mortality and thereby enhance the feasibility of population control strategies for native forest insect pests. Our results suggest that some native forest insect pests may require relatively little additive mortality to suppress outbreaks if compensation-limiting strategies are used. Incorporating theoretical and strategic frameworks used in vertebrate population management could advance the development of native insect population control programmes.
期刊介绍:
Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year.
Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of:
Agronomy
Agrometeorology
Agrienvironmental sciences
Applied genomics
Applied metabolomics
Applied proteomics
Biodiversity
Biological control
Climate change
Crop ecology
Entomology
Genetic manipulation
Molecular biology
Mycology
Nematology
Pests
Plant pathology
Plant breeding & genetics
Plant physiology
Post harvest biology
Soil science
Statistics
Virology
Weed biology
Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.