Noah-MP Parameter Optimization at Southern Great Plains Using Bayesian Optimization

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Qingyu Wang, Sean Crowell, Petra Klein
{"title":"Noah-MP Parameter Optimization at Southern Great Plains Using Bayesian Optimization","authors":"Qingyu Wang,&nbsp;Sean Crowell,&nbsp;Petra Klein","doi":"10.1029/2024JD041793","DOIUrl":null,"url":null,"abstract":"<p>Understanding the key mechanisms that govern land-surface processes is crucial for accurately characterizing the energy, mass, and momentum exchanges between the atmospheric boundary layer, the land surface, and the subsurface across various atmosphere-soil-vegetation systems. To enhance our understanding of the mechanisms of land surface-atmosphere interactions and reduce the mismatches between Noah-Multiparameterization Land Surface (Noah-MP) simulations and observational data, we optimized the seven most sensitive parameters in the Noah-MP for a 9-day period (2–10 April 2016) at the Southern Great Plains site using Bayesian Optimization (BO). The implementation of Noah-MP in the single-column Weather Research and Forecasting (WRF) model and the application of BO allow for site-level parameter estimation. The Noah-MP shows an improvement in the simulation of sensible heat flux and latent heat flux when we use optimized parameters instead of the default parameters according to data from flux tower observations. The optimized parameter values indicate that the top layer (0–20 cm below the ground surface) of soil at the Southern Great Plains site may contain a higher sand content than indicated by the silty-clay-loam soil classification provided by AmeriFlux agricultural records. These optimized parameters also improve the simulation of atmospheric state variables, especially the 2-m specific humidity, and result in improved top-layer soil moisture and temperature simulations. The optimized parameters not only improve the simulation during the selected 9 days in April 2016 but also lead to better simulation results throughout the entire alfalfa growing season in 2016 (April and May) at the Southern Great Plains site.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 13","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041793","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the key mechanisms that govern land-surface processes is crucial for accurately characterizing the energy, mass, and momentum exchanges between the atmospheric boundary layer, the land surface, and the subsurface across various atmosphere-soil-vegetation systems. To enhance our understanding of the mechanisms of land surface-atmosphere interactions and reduce the mismatches between Noah-Multiparameterization Land Surface (Noah-MP) simulations and observational data, we optimized the seven most sensitive parameters in the Noah-MP for a 9-day period (2–10 April 2016) at the Southern Great Plains site using Bayesian Optimization (BO). The implementation of Noah-MP in the single-column Weather Research and Forecasting (WRF) model and the application of BO allow for site-level parameter estimation. The Noah-MP shows an improvement in the simulation of sensible heat flux and latent heat flux when we use optimized parameters instead of the default parameters according to data from flux tower observations. The optimized parameter values indicate that the top layer (0–20 cm below the ground surface) of soil at the Southern Great Plains site may contain a higher sand content than indicated by the silty-clay-loam soil classification provided by AmeriFlux agricultural records. These optimized parameters also improve the simulation of atmospheric state variables, especially the 2-m specific humidity, and result in improved top-layer soil moisture and temperature simulations. The optimized parameters not only improve the simulation during the selected 9 days in April 2016 but also lead to better simulation results throughout the entire alfalfa growing season in 2016 (April and May) at the Southern Great Plains site.

基于贝叶斯优化的南大平原Noah-MP参数优化
了解控制陆地表面过程的关键机制对于准确表征大气边界层、陆地表面和跨各种大气-土壤-植被系统的次表层之间的能量、质量和动量交换至关重要。为了加深对陆面-大气相互作用机制的理解,减少诺亚多参数化陆面(Noah-MP)模拟与观测数据之间的不匹配,利用贝叶斯优化(BO)方法对2016年4月2-10日南大平原地区诺亚多参数化陆面(Noah-MP)模拟的7个最敏感参数进行了优化。Noah-MP在单列天气研究与预报(WRF)模型中的实施和BO的应用允许站点级参数估计。根据通量塔观测数据,采用优化后的参数代替默认参数后,Noah-MP对感热通量和潜热通量的模拟效果有所改善。优化后的参数值表明,与AmeriFlux农业记录提供的粉质-粘土-壤土分类相比,南部大平原土壤表层(地表以下0 ~ 20 cm)的含沙量可能更高。优化后的参数也改善了大气状态变量的模拟,特别是2m比湿度的模拟,改善了表层土壤湿度和温度的模拟。优化后的参数不仅改善了2016年4月选取的9天内的模拟效果,而且对2016年整个大平原苜蓿生长季节(4月和5月)的模拟效果也较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信