{"title":"ToMPC: Task-Oriented Model Predictive Control via ADMM for Safe Robotic Manipulation","authors":"Xinyu Jia;Wenxin Wang;Jun Yang;Yongping Pan;Haoyong Yu","doi":"10.1109/LRA.2025.3579205","DOIUrl":null,"url":null,"abstract":"This letter proposes a task-oriented model predictive control (ToMPC) framework for safe and efficient robotic manipulation in open workspaces. The framework unifies collision-free motion and robot-environment interaction to address diverse scenarios. Additionally, it introduces task-oriented obstacle avoidance that leverages kinematic redundancy to enhance manipulation efficiency in obstructed environments. This complex optimization problem is solved by the alternating direction method of multipliers (ADMM), which decomposes the problem into two subproblems tackled by differential dynamic programming (DDP) and quadratic programming (QP), respectively. The effectiveness of this approach is validated in simulation and hardware experiments on a Franka Panda robotic manipulator. Results demonstrate that the framework can plan motion and/or force trajectories in real time, maximize the manipulation range while avoiding obstacles, and strictly adhere to safety-related hard constraints.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"7939-7946"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11031218/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter proposes a task-oriented model predictive control (ToMPC) framework for safe and efficient robotic manipulation in open workspaces. The framework unifies collision-free motion and robot-environment interaction to address diverse scenarios. Additionally, it introduces task-oriented obstacle avoidance that leverages kinematic redundancy to enhance manipulation efficiency in obstructed environments. This complex optimization problem is solved by the alternating direction method of multipliers (ADMM), which decomposes the problem into two subproblems tackled by differential dynamic programming (DDP) and quadratic programming (QP), respectively. The effectiveness of this approach is validated in simulation and hardware experiments on a Franka Panda robotic manipulator. Results demonstrate that the framework can plan motion and/or force trajectories in real time, maximize the manipulation range while avoiding obstacles, and strictly adhere to safety-related hard constraints.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.