Fringe gate capacitance model for nanowire reconfigurable field effect transistors

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Mengge Jin , Fu Gong , Yang Shen , Yuhang Zhang , Bingyi Ye , Shaoqiang Chen , Xinyu Dong , Fei Lu , Ziyu Liu , Xiaojin Li , Yanling Shi , Yabin Sun
{"title":"Fringe gate capacitance model for nanowire reconfigurable field effect transistors","authors":"Mengge Jin ,&nbsp;Fu Gong ,&nbsp;Yang Shen ,&nbsp;Yuhang Zhang ,&nbsp;Bingyi Ye ,&nbsp;Shaoqiang Chen ,&nbsp;Xinyu Dong ,&nbsp;Fei Lu ,&nbsp;Ziyu Liu ,&nbsp;Xiaojin Li ,&nbsp;Yanling Shi ,&nbsp;Yabin Sun","doi":"10.1016/j.micrna.2025.208249","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, an analytical model for the fringe gate capacitance in nanowire reconfigurable field effect transistors (RFETs) is proposed to address the increasing complexity of advanced RFET designs. The model's accuracy is validated using the 3-D field solver ensuring reliable performance predictions. To enhance the precision of the model, empirical parameters are incorporated into the model for different components of the nanowire structure. These parameters are designed to calibrate the effective width of ring-shaped capacitors and correct errors in electric field line distribution. The impact of device parameter variations on the overall fringe gate capacitance and model accuracy was evaluated with the root mean square error (RMSE) within 2.18 % error compared to the simulation values. The parasitic capacitance model can be embedded into machine learning-extracted RFET circuits to further simulate its impact on circuit performance. Results indicate that parasitic capacitance significantly increases circuit delay by up to 20.9 %. These findings underscore the importance of accurately modeling fringe gate capacitance in optimizing RF transistor circuit designs to enhance performance.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208249"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, an analytical model for the fringe gate capacitance in nanowire reconfigurable field effect transistors (RFETs) is proposed to address the increasing complexity of advanced RFET designs. The model's accuracy is validated using the 3-D field solver ensuring reliable performance predictions. To enhance the precision of the model, empirical parameters are incorporated into the model for different components of the nanowire structure. These parameters are designed to calibrate the effective width of ring-shaped capacitors and correct errors in electric field line distribution. The impact of device parameter variations on the overall fringe gate capacitance and model accuracy was evaluated with the root mean square error (RMSE) within 2.18 % error compared to the simulation values. The parasitic capacitance model can be embedded into machine learning-extracted RFET circuits to further simulate its impact on circuit performance. Results indicate that parasitic capacitance significantly increases circuit delay by up to 20.9 %. These findings underscore the importance of accurately modeling fringe gate capacitance in optimizing RF transistor circuit designs to enhance performance.
纳米线可重构场效应晶体管的条纹栅电容模型
在这项工作中,提出了纳米线可重构场效应晶体管(RFET)中条纹栅电容的解析模型,以解决先进的RFET设计日益复杂的问题。利用三维现场求解器验证了模型的准确性,确保了可靠的性能预测。为了提高模型的精度,在模型中加入了纳米线结构不同组成部分的经验参数。这些参数用于校正环形电容器的有效宽度和校正电场线分布误差。器件参数变化对总体条纹栅电容和模型精度的影响进行了评估,与仿真值相比,均方根误差(RMSE)误差在2.18%以内。寄生电容模型可以嵌入到机器学习提取的RFET电路中,进一步模拟其对电路性能的影响。结果表明,寄生电容可使电路延迟显著增加20.9%。这些发现强调了精确建模条纹栅电容在优化射频晶体管电路设计以提高性能方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信