Jia Liu , Dong-Liang Luo , Wen-Jie Lei , Fang-Fang Chen , Rui-Xia He , Cheng-Song Yang , Yan Lu , Shi-Zhen Li
{"title":"Variations of soil thermal conductivity in the Three-River Source Region, Qinghai‒Xizang Plateau","authors":"Jia Liu , Dong-Liang Luo , Wen-Jie Lei , Fang-Fang Chen , Rui-Xia He , Cheng-Song Yang , Yan Lu , Shi-Zhen Li","doi":"10.1016/j.accre.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>The ongoing permafrost degradation in the Three-River Source Region (TRSR) poses serious threats to ecosystems, water resources, and infrastructure projects. As the China Water Tower and a vital barrier for the high-altitude ecological security of China, the TRSR is particularly vulnerable to such changes. The extent and severity of permafrost degradation are primarily governed by heat transfer dynamics, with soil thermal conductivity (STC) playing a crucial role in regulating thermal equilibrium. However, research on STC is hindered by insufficient <em>in-situ</em> measurements. To address this gap, we conducted <em>in-situ</em> measurements of STC at soil depths of 0–40 cm across 58 plots at 12 sites in the TRSR (244 records) during July and August 2023. The driving mechanisms influencing STC variations were further analyzed through laboratory experiments in September and October 2023. Spatially, STC increases from west to east and vertically with soil depth. Control experiments revealed that STC at negative temperatures is markedly higher than that at positive temperatures and increases with volumetric moisture content, particularly in inorganic soils, sand and loamy sand. This effect is more pronounced at subzero temperatures. Meanwhile, our results show that an artificial neural network model (<em>R</em><sup>2</sup> = 0.78, <em>p</em> < 0.0001) incorporating ten measured soil physical parameters, outperforms traditional theoretical and empirical models in predicting STC. These findings contribute to a deeper understanding of permafrost formation, evolution, and its responses to climate change in the TRSR.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"16 3","pages":"Pages 552-564"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927825000723","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing permafrost degradation in the Three-River Source Region (TRSR) poses serious threats to ecosystems, water resources, and infrastructure projects. As the China Water Tower and a vital barrier for the high-altitude ecological security of China, the TRSR is particularly vulnerable to such changes. The extent and severity of permafrost degradation are primarily governed by heat transfer dynamics, with soil thermal conductivity (STC) playing a crucial role in regulating thermal equilibrium. However, research on STC is hindered by insufficient in-situ measurements. To address this gap, we conducted in-situ measurements of STC at soil depths of 0–40 cm across 58 plots at 12 sites in the TRSR (244 records) during July and August 2023. The driving mechanisms influencing STC variations were further analyzed through laboratory experiments in September and October 2023. Spatially, STC increases from west to east and vertically with soil depth. Control experiments revealed that STC at negative temperatures is markedly higher than that at positive temperatures and increases with volumetric moisture content, particularly in inorganic soils, sand and loamy sand. This effect is more pronounced at subzero temperatures. Meanwhile, our results show that an artificial neural network model (R2 = 0.78, p < 0.0001) incorporating ten measured soil physical parameters, outperforms traditional theoretical and empirical models in predicting STC. These findings contribute to a deeper understanding of permafrost formation, evolution, and its responses to climate change in the TRSR.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.