Defect-mediated improved electrochemical performance of WO3 incorporated MnS hetero-nanocomposites for supercapacitor electrodes in ionic electrolytes

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mizanur Rahaman , Md Khokon Miah , Faysual Kabir , Hossain Hridoy , Afsar Ali , Mehedi Hasan , Probal Roy , Mehedi Hasan Prince , Muhammad Rakibul Islam
{"title":"Defect-mediated improved electrochemical performance of WO3 incorporated MnS hetero-nanocomposites for supercapacitor electrodes in ionic electrolytes","authors":"Mizanur Rahaman ,&nbsp;Md Khokon Miah ,&nbsp;Faysual Kabir ,&nbsp;Hossain Hridoy ,&nbsp;Afsar Ali ,&nbsp;Mehedi Hasan ,&nbsp;Probal Roy ,&nbsp;Mehedi Hasan Prince ,&nbsp;Muhammad Rakibul Islam","doi":"10.1016/j.jpcs.2025.112959","DOIUrl":null,"url":null,"abstract":"<div><div>Here we report synthesis MnS nanoparticles, WO<sub>3</sub> nanorods, and WO<sub>3</sub> incorporated MnS nanocomposites (MnS/WO<sub>3</sub>) by a low-cost hydrothermal method for aqueous supercapacitor electrodes. The concentration of WO<sub>3</sub> varied sequentially and was optimized to obtain electrodes with improved capacitive performance for supercapacitor applications. The successful production of MnS/WO<sub>3</sub> nanocomposite was confirmed by XRD analysis, SEM images, and HR-TEM investigations. Incorporating WO<sub>3</sub> nanorods generates defects that enhance microstrain and dislocation density and expand the interlayer spacing. In a standard three-electrode setup, the MnS/WO<sub>3</sub> (5 wt%) nanocomposite exhibits outstanding electrochemical performance, reaching a specific capacitance of 263 F/g while the current density is 0.12 A/g. In two electrode configurations, the MnS/WO<sub>3</sub> (5 wt%) composite provides an energy density of 5.85 Whkg<sup>−1</sup> at a power density of 448 wkg<sup>−1</sup> with 86 % capacitive retention after completing 6000 charge-discharge cycles. The density functional theory revealed that the Mn-3d and W-5d orbitals produce defect states in the nanocomposite. Theoretical analysis also showed that the incorporation of WO<sub>3</sub> increases the quantum capacitance from 156 F/g to 293 F/g. The combined experimental and theoretical studies using a cost-effective technique will facilitate the development of new supercapacitor electrodes.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112959"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725004111","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Here we report synthesis MnS nanoparticles, WO3 nanorods, and WO3 incorporated MnS nanocomposites (MnS/WO3) by a low-cost hydrothermal method for aqueous supercapacitor electrodes. The concentration of WO3 varied sequentially and was optimized to obtain electrodes with improved capacitive performance for supercapacitor applications. The successful production of MnS/WO3 nanocomposite was confirmed by XRD analysis, SEM images, and HR-TEM investigations. Incorporating WO3 nanorods generates defects that enhance microstrain and dislocation density and expand the interlayer spacing. In a standard three-electrode setup, the MnS/WO3 (5 wt%) nanocomposite exhibits outstanding electrochemical performance, reaching a specific capacitance of 263 F/g while the current density is 0.12 A/g. In two electrode configurations, the MnS/WO3 (5 wt%) composite provides an energy density of 5.85 Whkg−1 at a power density of 448 wkg−1 with 86 % capacitive retention after completing 6000 charge-discharge cycles. The density functional theory revealed that the Mn-3d and W-5d orbitals produce defect states in the nanocomposite. Theoretical analysis also showed that the incorporation of WO3 increases the quantum capacitance from 156 F/g to 293 F/g. The combined experimental and theoretical studies using a cost-effective technique will facilitate the development of new supercapacitor electrodes.
离子电解质中WO3掺杂MnS异质纳米复合材料对超级电容器电极电化学性能的改善
在这里,我们报道了用低成本的水热法合成MnS纳米颗粒、WO3纳米棒和WO3掺杂的MnS纳米复合材料(MnS/WO3)用于水相超级电容器电极。WO3的浓度按顺序变化,并对其进行了优化,得到了电容性能更好的超级电容器电极。通过XRD分析、SEM图像和HR-TEM研究证实了MnS/WO3纳米复合材料的成功制备。加入WO3纳米棒会产生缺陷,提高微应变和位错密度,扩大层间间距。在标准的三电极设置中,MnS/WO3 (5 wt%)纳米复合材料表现出出色的电化学性能,当电流密度为0.12 a /g时,其比电容达到263 F/g。在两种电极配置中,MnS/WO3 (5wt %)复合材料在448 wkg - 1的功率密度下提供5.85 Whkg - 1的能量密度,在完成6000次充放电循环后具有86%的电容保持率。密度泛函理论表明,Mn-3d和W-5d轨道在纳米复合材料中产生缺陷态。理论分析还表明,WO3的加入使量子电容从156 F/g提高到293 F/g。结合实验和理论研究,采用一种具有成本效益的技术将促进新型超级电容器电极的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信