Wenning Chen , Jungchul Yun , Doyun Im , Sijia Li , Kelvian T. Mularso , Jihun Nam , Bonghyun Jo , Sangwook Lee , Hyun Suk Jung
{"title":"Artificial intelligence high-throughput prediction building dataset to enhance the interpretability of hybrid halide perovskite bandgap","authors":"Wenning Chen , Jungchul Yun , Doyun Im , Sijia Li , Kelvian T. Mularso , Jihun Nam , Bonghyun Jo , Sangwook Lee , Hyun Suk Jung","doi":"10.1016/j.jechem.2025.05.059","DOIUrl":null,"url":null,"abstract":"<div><div>The bandgap is a key parameter for understanding and designing hybrid perovskite material properties, as well as developing photovoltaic devices. Traditional bandgap calculation methods like ultraviolet-visible spectroscopy and first-principles calculations are time- and power-consuming, not to mention capturing bandgap change mechanisms for hybrid perovskite materials across a wide range of unknown space. In the present work, an artificial intelligence ensemble comprising two classifiers (with F1 scores of 0.9125 and 0.925) and a regressor (with mean squared error of 0.0014 eV) is constructed to achieve high-precision prediction of the bandgap. The bandgap perovskite dataset is established through high-throughput prediction of bandgaps by the ensemble. Based on the self-built dataset, partial dependence analysis (PDA) is developed to interpret the bandgap influential mechanism. Meanwhile, an interpretable mathematical model with an <em>R</em><sup>2</sup> of 0.8417 is generated using the genetic programming symbolic regression (GPSR) technique. The constructed PDA maps agree well with the Shapley Additive exPlanations, the GPSR model, and experiment verification. Through PDA, we reveal the boundary effect, the bowing effect, and their evolution trends with key descriptors.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"109 ","pages":"Pages 649-661"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The bandgap is a key parameter for understanding and designing hybrid perovskite material properties, as well as developing photovoltaic devices. Traditional bandgap calculation methods like ultraviolet-visible spectroscopy and first-principles calculations are time- and power-consuming, not to mention capturing bandgap change mechanisms for hybrid perovskite materials across a wide range of unknown space. In the present work, an artificial intelligence ensemble comprising two classifiers (with F1 scores of 0.9125 and 0.925) and a regressor (with mean squared error of 0.0014 eV) is constructed to achieve high-precision prediction of the bandgap. The bandgap perovskite dataset is established through high-throughput prediction of bandgaps by the ensemble. Based on the self-built dataset, partial dependence analysis (PDA) is developed to interpret the bandgap influential mechanism. Meanwhile, an interpretable mathematical model with an R2 of 0.8417 is generated using the genetic programming symbolic regression (GPSR) technique. The constructed PDA maps agree well with the Shapley Additive exPlanations, the GPSR model, and experiment verification. Through PDA, we reveal the boundary effect, the bowing effect, and their evolution trends with key descriptors.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy