{"title":"Global controllability to harmonic maps of the heat flow from a circle to a sphere","authors":"Jean-Michel Coron , Shengquan Xiang","doi":"10.1016/j.matpur.2025.103761","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the controllability and stabilization problems of the harmonic map heat flow from a circle to a sphere. Combining ideas from control theory, heat flow, differential geometry, and asymptotic analysis, we obtain several important properties, such as small-time local controllability, local quantitative rapid stabilization, obstruction to semi-global asymptotic stabilization, and global controllability to geodesics. Surprisingly, due to the geometric feature of the equation we can also prove the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding open problem for nonlinear heat equations.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103761"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001059","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the controllability and stabilization problems of the harmonic map heat flow from a circle to a sphere. Combining ideas from control theory, heat flow, differential geometry, and asymptotic analysis, we obtain several important properties, such as small-time local controllability, local quantitative rapid stabilization, obstruction to semi-global asymptotic stabilization, and global controllability to geodesics. Surprisingly, due to the geometric feature of the equation we can also prove the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding open problem for nonlinear heat equations.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.