Global controllability to harmonic maps of the heat flow from a circle to a sphere

IF 2.3 1区 数学 Q1 MATHEMATICS
Jean-Michel Coron , Shengquan Xiang
{"title":"Global controllability to harmonic maps of the heat flow from a circle to a sphere","authors":"Jean-Michel Coron ,&nbsp;Shengquan Xiang","doi":"10.1016/j.matpur.2025.103761","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the controllability and stabilization problems of the harmonic map heat flow from a circle to a sphere. Combining ideas from control theory, heat flow, differential geometry, and asymptotic analysis, we obtain several important properties, such as small-time local controllability, local quantitative rapid stabilization, obstruction to semi-global asymptotic stabilization, and global controllability to geodesics. Surprisingly, due to the geometric feature of the equation we can also prove the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding open problem for nonlinear heat equations.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103761"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001059","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the controllability and stabilization problems of the harmonic map heat flow from a circle to a sphere. Combining ideas from control theory, heat flow, differential geometry, and asymptotic analysis, we obtain several important properties, such as small-time local controllability, local quantitative rapid stabilization, obstruction to semi-global asymptotic stabilization, and global controllability to geodesics. Surprisingly, due to the geometric feature of the equation we can also prove the small-time global controllability between harmonic maps within the same homotopy class for general compact Riemannian manifold targets, which is to be compared with the analogous but longstanding open problem for nonlinear heat equations.
从圆到球的热流谐波图的全局可控性
本文研究了从圆到球的调和映射热流的可控性和稳定化问题。结合控制论、热流、微分几何和渐近分析的思想,我们得到了几个重要的性质,如小时局部可控性、局部定量快速镇定、半全局渐近镇定的阻碍性和测地线的全局可控性。令人惊讶的是,由于方程的几何特征,我们还可以证明一般紧黎曼流形目标在同一同伦类中的调和映射之间的小时全局可控性,并将其与非线性热方程的类似但长期开放问题进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信