{"title":"Atom divisor graph of a poset","authors":"Anil Khairnar , Vikas Kulal","doi":"10.1016/j.dam.2025.06.032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>P</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mo>≤</mo><mo>)</mo></mrow></mrow></math></span> be a poset with least element 0 and <span><math><mrow><mi>A</mi><mo>⊆</mo><mi>V</mi></mrow></math></span>. Then <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>=</mo><mfenced><mrow><mi>b</mi><mo>∈</mo><mi>V</mi><mo>∣</mo><mi>b</mi><mo>≤</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mtext>for every</mtext><mspace></mspace><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></mfenced></mrow></math></span> is a <span><math><mrow><mi>l</mi><mi>o</mi><mi>w</mi><mi>e</mi><mi>r</mi><mspace></mspace><mi>c</mi><mi>o</mi><mi>n</mi><mi>e</mi></mrow></math></span> of <span><math><mi>A</mi></math></span>. Denote <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. In this paper, we introduce the atom-divisor graph of <span><math><mi>P</mi></math></span>, denoted by <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span>, it is a graph with the vertex set <span><math><mrow><mi>P</mi><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, and two distinct vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> are adjacent if and only if <span><math><mrow><msup><mrow><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></mrow></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>⊆</mo><mi>A</mi><mi>t</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span>. Since <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> is generally not connected, the condition for ADG(P) to be connected is determined. If <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> contains a cycle, then we have shown that its girth is <span><math><mrow><mn>3</mn><mspace></mspace><mtext>or even</mtext></mrow></math></span>. Moreover, we obtain a class of posets for which the girth of <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> is <span><math><mrow><mn>3</mn><mo>,</mo><mn>4</mn><mspace></mspace><mtext>or</mtext><mspace></mspace><mn>2</mn><mi>n</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. We obtain necessary and sufficient conditions for <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> to be in the class of cycles, paths, stars, complete bipartite, complete, complete multipartite, or sun graphs. The bounds on domination and clique number of <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> are determined. Further, we give the class of posets for which <span><math><mrow><mi>A</mi><mi>D</mi><mi>G</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> is not weakly perfect.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 167-177"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003506","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a poset with least element 0 and . Then is a of . Denote . In this paper, we introduce the atom-divisor graph of , denoted by , it is a graph with the vertex set , and two distinct vertices and are adjacent if and only if . Since is generally not connected, the condition for ADG(P) to be connected is determined. If contains a cycle, then we have shown that its girth is . Moreover, we obtain a class of posets for which the girth of is . We obtain necessary and sufficient conditions for to be in the class of cycles, paths, stars, complete bipartite, complete, complete multipartite, or sun graphs. The bounds on domination and clique number of are determined. Further, we give the class of posets for which is not weakly perfect.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.