{"title":"Stability and large-time behavior for Euler-like equations","authors":"Jiahong Wu , Xiaojing Xu , Yueyuan Zhong , Ning Zhu","doi":"10.1016/j.jde.2025.113578","DOIUrl":null,"url":null,"abstract":"<div><div>This paper intends to understand the long-time existence and stability of solutions to an Euler-like equation. An Euler-like equation is the 2D incompressible Euler equation with an extra singular integral operator (SIO) type term. In contrast to the 2D Euler equation, the vorticity to the 2D Euler-like equation is not known to be bounded due to the unboundedness of the SIO on the space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. As a consequence, classical Yudovich theory fails on the Euler-like equation. The global existence, regularity and stability problems on the Euler-like equation are generally open. This paper makes progress on an Euler-like equation arising in the study of several fluids. We establish a long-time existence and stability result. When the Sobolev size of the initial data is of order <em>ε</em>, the solution is shown to live on a time interval of the size <span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. When the initial data is restricted to a class with special symmetry, we obtain the global existence and nonlinear stability.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113578"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper intends to understand the long-time existence and stability of solutions to an Euler-like equation. An Euler-like equation is the 2D incompressible Euler equation with an extra singular integral operator (SIO) type term. In contrast to the 2D Euler equation, the vorticity to the 2D Euler-like equation is not known to be bounded due to the unboundedness of the SIO on the space . As a consequence, classical Yudovich theory fails on the Euler-like equation. The global existence, regularity and stability problems on the Euler-like equation are generally open. This paper makes progress on an Euler-like equation arising in the study of several fluids. We establish a long-time existence and stability result. When the Sobolev size of the initial data is of order ε, the solution is shown to live on a time interval of the size . When the initial data is restricted to a class with special symmetry, we obtain the global existence and nonlinear stability.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics