Resilience in Cyber-Physical Infrastructures: R-KPI prioritization, framework development, and case study insights

IF 3.7 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Ali Aghazadeh Ardebili , Marco Boscolo , Antonella Longo , Mahdad Pourmadadkar , Antonio Ficarella , Elio Padoano
{"title":"Resilience in Cyber-Physical Infrastructures: R-KPI prioritization, framework development, and case study insights","authors":"Ali Aghazadeh Ardebili ,&nbsp;Marco Boscolo ,&nbsp;Antonella Longo ,&nbsp;Mahdad Pourmadadkar ,&nbsp;Antonio Ficarella ,&nbsp;Elio Padoano","doi":"10.1016/j.jnlssr.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>Critical infrastructures (CIs) embody cyber-physical-social systems (CPSSs) where physical entities are integrated with cyber components, shaping service delivery through end-user behavior. The seamless operation of CIs is vital for society, and the CPSS resilience relies on interdependencies with AI-integrated technologies. The complexity of the system, and the interconnections with other infrastructures, along with the socio-technical transition towards digitization raised the necessity of implementing Resilience Engineering. This motivates exploration of the scientific literature on resilience key performance indicators (R-KPIs) which support strategies for ensuring service continuity. Therefore, this article aims to identify R-KPIs for AI-integrated CIs and prioritize the extracted R-KPIs using a hybrid Multi-Criteria Decision-Making (MCDM) approach. The results show the importance of employing R-KPIs that measure risk probability, energy self-sufficiency level of the system under study, and performance indicators including functionality loss, recovery time, and minimum performance level after disturbance as the most effective R-KPIs in the domain of this study. After identifying and prioritizing the R-KPIs, a general framework is proposed to employ these R-KPIs in modeling the resilience of a CPS. Finally, a case study demonstrates the implementation of the framework and KPIs in a real-life scenario.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 3","pages":"Article 100194"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449625000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Critical infrastructures (CIs) embody cyber-physical-social systems (CPSSs) where physical entities are integrated with cyber components, shaping service delivery through end-user behavior. The seamless operation of CIs is vital for society, and the CPSS resilience relies on interdependencies with AI-integrated technologies. The complexity of the system, and the interconnections with other infrastructures, along with the socio-technical transition towards digitization raised the necessity of implementing Resilience Engineering. This motivates exploration of the scientific literature on resilience key performance indicators (R-KPIs) which support strategies for ensuring service continuity. Therefore, this article aims to identify R-KPIs for AI-integrated CIs and prioritize the extracted R-KPIs using a hybrid Multi-Criteria Decision-Making (MCDM) approach. The results show the importance of employing R-KPIs that measure risk probability, energy self-sufficiency level of the system under study, and performance indicators including functionality loss, recovery time, and minimum performance level after disturbance as the most effective R-KPIs in the domain of this study. After identifying and prioritizing the R-KPIs, a general framework is proposed to employ these R-KPIs in modeling the resilience of a CPS. Finally, a case study demonstrates the implementation of the framework and KPIs in a real-life scenario.
网络物理基础设施中的弹性:R-KPI优先级、框架开发和案例研究见解
关键基础设施(ci)体现了网络-物理-社会系统(cpss),其中物理实体与网络组件集成,通过最终用户行为塑造服务交付。ci的无缝运行对社会至关重要,CPSS的弹性依赖于与人工智能集成技术的相互依赖。系统的复杂性,与其他基础设施的相互联系,以及向数字化的社会技术转型,都提高了实施弹性工程的必要性。这激发了对弹性关键绩效指标(r - kpi)的科学文献的探索,这些指标支持确保服务连续性的战略。因此,本文旨在确定ai集成ci的r - kpi,并使用混合多标准决策(MCDM)方法对提取的r - kpi进行优先排序。结果表明,在本研究领域,采用衡量风险概率、所研究系统的能量自给水平以及包括功能损失、恢复时间和扰动后最低性能水平在内的性能指标的r - kpi是最有效的r - kpi。在确定r - kpi并对其进行优先级排序之后,提出了一个通用框架,以使用这些r - kpi对CPS的弹性进行建模。最后,案例研究演示了在现实场景中框架和kpi的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信