Spike-TBR: A noise resilient neuromorphic event representation

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gabriele Magrini , Federico Becattini , Luca Cultrera , Lorenzo Berlincioni , Pietro Pala , Alberto Del Bimbo
{"title":"Spike-TBR: A noise resilient neuromorphic event representation","authors":"Gabriele Magrini ,&nbsp;Federico Becattini ,&nbsp;Luca Cultrera ,&nbsp;Lorenzo Berlincioni ,&nbsp;Pietro Pala ,&nbsp;Alberto Del Bimbo","doi":"10.1016/j.patrec.2025.05.018","DOIUrl":null,"url":null,"abstract":"<div><div>Event cameras offer significant advantages over traditional frame-based sensors, including higher temporal resolution, lower latency and dynamic range. However, efficiently converting event streams into formats compatible with standard computer vision pipelines remains a challenging problem, particularly in the presence of noise. In this paper, we propose Spike-TBR, a novel event-based encoding strategy based on Temporal Binary Representation (TBR), addressing its vulnerability to noise by integrating spiking neurons. Spike-TBR combines the frame-based advantages of TBR with the noise-filtering capabilities of spiking neural networks, creating a more robust representation of event streams. We evaluate four variants of Spike-TBR, each using different spiking neurons, across multiple datasets, demonstrating superior performance in noise-affected scenarios while improving the results on clean data. Our method bridges the gap between spike-based and frame-based processing, offering a simple noise-resilient solution for event-driven vision applications.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 198-205"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002144","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Event cameras offer significant advantages over traditional frame-based sensors, including higher temporal resolution, lower latency and dynamic range. However, efficiently converting event streams into formats compatible with standard computer vision pipelines remains a challenging problem, particularly in the presence of noise. In this paper, we propose Spike-TBR, a novel event-based encoding strategy based on Temporal Binary Representation (TBR), addressing its vulnerability to noise by integrating spiking neurons. Spike-TBR combines the frame-based advantages of TBR with the noise-filtering capabilities of spiking neural networks, creating a more robust representation of event streams. We evaluate four variants of Spike-TBR, each using different spiking neurons, across multiple datasets, demonstrating superior performance in noise-affected scenarios while improving the results on clean data. Our method bridges the gap between spike-based and frame-based processing, offering a simple noise-resilient solution for event-driven vision applications.
刺突- tbr:噪声弹性神经形态事件表征
与传统的基于帧的传感器相比,事件相机具有显著的优势,包括更高的时间分辨率、更低的延迟和动态范围。然而,有效地将事件流转换为与标准计算机视觉管道兼容的格式仍然是一个具有挑战性的问题,特别是在存在噪声的情况下。在本文中,我们提出了一种基于时间二值表示(TBR)的基于事件的编码策略Spike-TBR,通过整合尖峰神经元来解决其易受噪声影响的问题。Spike-TBR结合了TBR基于帧的优势和spike神经网络的噪声过滤能力,创建了一个更鲁棒的事件流表示。我们在多个数据集上评估了Spike-TBR的四种变体,每种变体使用不同的spike神经元,在噪声影响的情况下展示了优越的性能,同时改进了干净数据上的结果。我们的方法弥合了基于峰值和基于帧的处理之间的差距,为事件驱动的视觉应用提供了简单的抗噪声解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信