F-MMD-DBA: Frobenius-norm Maximum Mean Discrepancy for domain bi-classifier adversarial

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zichao Cai , Zongze Wu , Yanyun Qu , Deyu Zeng
{"title":"F-MMD-DBA: Frobenius-norm Maximum Mean Discrepancy for domain bi-classifier adversarial","authors":"Zichao Cai ,&nbsp;Zongze Wu ,&nbsp;Yanyun Qu ,&nbsp;Deyu Zeng","doi":"10.1016/j.patrec.2025.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised domain bi-classifier adversarial approaches are promising methods to deal with domain shifts. Combined with metric learning, they significantly reduce ambiguous predictions. However, they have challenges in the leverage of global information, the relationships between subdomains, the consistency of feature representation, and the conflict due to the bi-classifier adversarial paradigm and usage of local information. Here, we propose Frobenius-norm Maximum Mean Discrepancy for Domain Bi-classifier Adversarial (F-MMD-DBA) to alleviate these by imposing and integrating global and local constraints. Maximum Mean Discrepancy, as the global constraint, can utilize global information. As the local constraint, Frobenius-norm focuses on the relationship of subdomains and avoids conflict. The integration of global and local constraints increases the consistency of feature representation. Ours has greatly improved the accuracy of digits classification and object recognition tasks. The code will be available at <span><span>https://github.com/JackyDeepLearning/F-MMD-DBA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 191-197"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552500234X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised domain bi-classifier adversarial approaches are promising methods to deal with domain shifts. Combined with metric learning, they significantly reduce ambiguous predictions. However, they have challenges in the leverage of global information, the relationships between subdomains, the consistency of feature representation, and the conflict due to the bi-classifier adversarial paradigm and usage of local information. Here, we propose Frobenius-norm Maximum Mean Discrepancy for Domain Bi-classifier Adversarial (F-MMD-DBA) to alleviate these by imposing and integrating global and local constraints. Maximum Mean Discrepancy, as the global constraint, can utilize global information. As the local constraint, Frobenius-norm focuses on the relationship of subdomains and avoids conflict. The integration of global and local constraints increases the consistency of feature representation. Ours has greatly improved the accuracy of digits classification and object recognition tasks. The code will be available at https://github.com/JackyDeepLearning/F-MMD-DBA.
领域双分类器对抗的frobenius -范数最大平均差异
无监督域双分类器对抗方法是一种很有前途的处理域转移的方法。结合度量学习,它们显著减少了模糊预测。然而,它们在利用全局信息、子域之间的关系、特征表示的一致性以及由于双分类器对抗范式和局部信息使用而产生的冲突方面存在挑战。在这里,我们提出了域双分类器对抗(F-MMD-DBA)的frobenius -范数最大平均差异,通过强加和整合全局和局部约束来缓解这些问题。最大均值差异作为全局约束,可以利用全局信息。frobenius -范数作为局部约束,关注子域之间的关系,避免冲突。全局约束和局部约束的结合提高了特征表示的一致性。我们的方法大大提高了数字分类和目标识别任务的准确性。代码可在https://github.com/JackyDeepLearning/F-MMD-DBA上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信