Kernel projection operator's approximation error estimation in weighted mixed-norm shift-invariant subspaces

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Junjian Zhao
{"title":"Kernel projection operator's approximation error estimation in weighted mixed-norm shift-invariant subspaces","authors":"Junjian Zhao","doi":"10.1016/j.bulsci.2025.103689","DOIUrl":null,"url":null,"abstract":"<div><div>By utilizing the Strang-Fix theory, approximation of non-decaying signals from shift-invariant subspaces (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm) is studied by Nguyen and Unser (2019) <span><span>[42]</span></span>. The non-decaying function can be seemed as a kind of weighted function. In this paper, using the weighted mixed-norm Wiener amalgam space and hybrid space, we will study the approximation error bounds of the kernel projection operator in the weighted mixed-norm sense without Strang-Fix theory. Note that the condition under weighted mixed-norm hybrid space is weaker than that of Wiener amalgam space. So, in this paper, not only based on the Wiener amalgam space, we will also demonstrate that, as a comparison, the approximation results of the projection operator are also valid under the relevant hybrid space.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103689"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001150","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

By utilizing the Strang-Fix theory, approximation of non-decaying signals from shift-invariant subspaces (Lp-norm) is studied by Nguyen and Unser (2019) [42]. The non-decaying function can be seemed as a kind of weighted function. In this paper, using the weighted mixed-norm Wiener amalgam space and hybrid space, we will study the approximation error bounds of the kernel projection operator in the weighted mixed-norm sense without Strang-Fix theory. Note that the condition under weighted mixed-norm hybrid space is weaker than that of Wiener amalgam space. So, in this paper, not only based on the Wiener amalgam space, we will also demonstrate that, as a comparison, the approximation results of the projection operator are also valid under the relevant hybrid space.
加权混合范数移不变子空间中核投影算子的近似误差估计
通过利用奇异修正理论,Nguyen和Unser(2019)[42]研究了来自移不变子空间(lp范数)的非衰减信号的逼近。非衰减函数可以看作是一种加权函数。本文利用加权混合范数Wiener amalgam空间和混合空间,研究了不含strange - fix理论的加权混合范数意义下核投影算子的近似误差界。注意,加权混合范数混合空间下的条件弱于Wiener汞合金空间下的条件。因此,在本文中,我们不仅基于Wiener汞合金空间,作为比较,我们还将证明投影算子的近似结果在相应的混合空间下也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信