The use of hydrophobic deep eutectic solvent dodecanoic acid/menthol as a sustainable diluent for the continuous extraction process of Fe and Ti separation

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Nikita A. Milevskii, Dmitriy V. Lobovich, Arina V. Milevskaya, Yulia A. Zakhodyaeva, Andrey A. Voshkin
{"title":"The use of hydrophobic deep eutectic solvent dodecanoic acid/menthol as a sustainable diluent for the continuous extraction process of Fe and Ti separation","authors":"Nikita A. Milevskii,&nbsp;Dmitriy V. Lobovich,&nbsp;Arina V. Milevskaya,&nbsp;Yulia A. Zakhodyaeva,&nbsp;Andrey A. Voshkin","doi":"10.1016/j.hydromet.2025.106526","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrophobic deep eutectic solvents (HDES) have long been used for the extraction of metal ions from aqueous systems. This study proposes the use of HDES composed of dodecanoic acid and menthol as a diluent for tributyl phosphate (TBP), which serves as the extractant. The results demonstrate that the extraction system developed remains stable across a broad range of TBP concentrations and possesses excellent physical properties, making it suitable for laboratory-scale extraction equipment. By examining the extraction of iron and titanium ions, key dependencies of extraction efficiency were identified as varying acidity levels, volume ratios, initial metal concentrations and conditions for effective stripping. Notably, the efficiency of the extractant remained unchanged after ten cycles of extraction and stripping, particularly for titanium ions extracted from 10 mol/L hydrochloric acid. This indicates the chemical stability of the proposed extraction system. A continuous separation process for iron and titanium was successfully implemented on laboratory extraction equipment using liquid pseudomembranes, achieving an efficiency greater than 95 % of the theoretical maximum. These findings suggest that HDES have significant potential for use as non-volatile, non-combustible and renewable solvents in extraction processes.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106526"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X2500091X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrophobic deep eutectic solvents (HDES) have long been used for the extraction of metal ions from aqueous systems. This study proposes the use of HDES composed of dodecanoic acid and menthol as a diluent for tributyl phosphate (TBP), which serves as the extractant. The results demonstrate that the extraction system developed remains stable across a broad range of TBP concentrations and possesses excellent physical properties, making it suitable for laboratory-scale extraction equipment. By examining the extraction of iron and titanium ions, key dependencies of extraction efficiency were identified as varying acidity levels, volume ratios, initial metal concentrations and conditions for effective stripping. Notably, the efficiency of the extractant remained unchanged after ten cycles of extraction and stripping, particularly for titanium ions extracted from 10 mol/L hydrochloric acid. This indicates the chemical stability of the proposed extraction system. A continuous separation process for iron and titanium was successfully implemented on laboratory extraction equipment using liquid pseudomembranes, achieving an efficiency greater than 95 % of the theoretical maximum. These findings suggest that HDES have significant potential for use as non-volatile, non-combustible and renewable solvents in extraction processes.
采用疏水深度共熔溶剂十二烷酸/薄荷醇作为持续稀释剂,进行了Fe和Ti分离的连续萃取过程
疏水深共晶溶剂(HDES)长期以来被用于从水体系中提取金属离子。本研究提出用十二烷酸和薄荷醇组成的HDES作为磷酸三丁酯(TBP)的稀释剂,作为萃取剂。结果表明,该萃取体系在较宽的TBP浓度范围内保持稳定,具有优异的物理性能,适合实验室规模的萃取设备。通过考察铁和钛离子的萃取,确定了萃取效率的关键依赖关系是不同的酸度水平、体积比、初始金属浓度和有效剥离的条件。值得注意的是,在10 mol/L的盐酸中提取钛离子后,萃取剂的萃取效率保持不变。这表明了所提萃取体系的化学稳定性。在实验室萃取设备上,利用液体假膜成功地实现了铁和钛的连续分离,效率大于理论最大值的95%。这些发现表明,HDES在萃取过程中作为非挥发性、不可燃和可再生溶剂具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信