Determining Lorentzian manifold from non-linear wave observation at a single point

IF 2.4 2区 数学 Q1 MATHEMATICS
Medet Nursultanov , Lauri Oksanen , Leo Tzou
{"title":"Determining Lorentzian manifold from non-linear wave observation at a single point","authors":"Medet Nursultanov ,&nbsp;Lauri Oksanen ,&nbsp;Leo Tzou","doi":"10.1016/j.jde.2025.113563","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an inverse problem for a non-linear hyperbolic equation. We show that the conformal structure of a Lorentzian manifold can be determined by the source-to-solution map evaluated along a single timelike curve. We use the microlocal analysis of non-linear wave interaction.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113563"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500590X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an inverse problem for a non-linear hyperbolic equation. We show that the conformal structure of a Lorentzian manifold can be determined by the source-to-solution map evaluated along a single timelike curve. We use the microlocal analysis of non-linear wave interaction.
从单点非线性波观测中确定洛伦兹流形
考虑一类非线性双曲型方程的反问题。我们证明了洛伦兹流形的共形结构可以由沿单个类时曲线计算的源到解映射来确定。我们使用非线性波相互作用的微局部分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信