Brittle-to-ductile transition during rock cutting by chisel pick under deep-sea confining pressure

IF 4.4 2区 工程技术 Q1 ENGINEERING, OCEAN
Zenghui Liu , Rui Lv , Xinlei Chen , Xiao Wang , Kai Liu , Changyun Wei
{"title":"Brittle-to-ductile transition during rock cutting by chisel pick under deep-sea confining pressure","authors":"Zenghui Liu ,&nbsp;Rui Lv ,&nbsp;Xinlei Chen ,&nbsp;Xiao Wang ,&nbsp;Kai Liu ,&nbsp;Changyun Wei","doi":"10.1016/j.apor.2025.104683","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of deep-sea mineral extraction necessitates a comprehensive understanding of rock failure mode transitions under high confining pressures to optimize mining efficiency. This investigation systematically examines ductile-to-brittle failure transitions during rock cutting across a range of confining pressures, with particular emphasis on elucidating the relationship between critical transition cutting depth and confining pressure. Further investigation examines chip formation and crack propagation across different failure scenarios through a coupled finite discrete element-Euler method. The findings indicate that rock cutting is characterized by three distinct failure modes: ductile failure, ductile-brittle failure, and brittle failure. Each mode corresponds to the formation of specific chip morphologies—fine powder, flake-like chips, and chunk-like chips, respectively. Additionally, these modes align with three piecewise functions (<span><math><mrow><mi>S</mi><mi>E</mi><mo>∝</mo><msup><mrow><mi>d</mi></mrow><mn>0</mn></msup></mrow></math></span>, <span><math><mrow><mi>S</mi><mi>E</mi><mo>∝</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mn>0.6</mn></mrow></msup></mrow></math></span>and <span><math><mrow><mi>S</mi><mi>E</mi><mo>∝</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mn>1.1</mn></mrow></msup></mrow></math></span>) and distinct failure zones (the crushed zone, the plastic flow zone and the main failure zone). Notably, the critical transition cutting depth increases approximately linearly with confining pressure. As confining pressure rises, crack propagation diminishes, ultimately becoming confined to the region directly in front of the cutting tip. This study provides valuable insights into the development of low-disturbance and efficient mechanical rock-breaking techniques for deep-sea mining.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"161 ","pages":"Article 104683"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725002706","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of deep-sea mineral extraction necessitates a comprehensive understanding of rock failure mode transitions under high confining pressures to optimize mining efficiency. This investigation systematically examines ductile-to-brittle failure transitions during rock cutting across a range of confining pressures, with particular emphasis on elucidating the relationship between critical transition cutting depth and confining pressure. Further investigation examines chip formation and crack propagation across different failure scenarios through a coupled finite discrete element-Euler method. The findings indicate that rock cutting is characterized by three distinct failure modes: ductile failure, ductile-brittle failure, and brittle failure. Each mode corresponds to the formation of specific chip morphologies—fine powder, flake-like chips, and chunk-like chips, respectively. Additionally, these modes align with three piecewise functions (SEd0, SEd0.6and SEd1.1) and distinct failure zones (the crushed zone, the plastic flow zone and the main failure zone). Notably, the critical transition cutting depth increases approximately linearly with confining pressure. As confining pressure rises, crack propagation diminishes, ultimately becoming confined to the region directly in front of the cutting tip. This study provides valuable insights into the development of low-disturbance and efficient mechanical rock-breaking techniques for deep-sea mining.
深海围压下凿镐切割岩石的脆性-延性转变
深海矿物开采技术的进步要求全面了解高围压下岩石破坏模式的转变,以优化开采效率。本研究系统地研究了在一定围压范围内岩石切割过程中的韧性-脆性破坏转变,特别强调了临界过渡切割深度与围压之间的关系。通过耦合有限离散元-欧拉方法进一步研究了不同失效场景下的切屑形成和裂纹扩展。研究结果表明,岩石切割具有三种不同的破坏模式:韧性破坏、韧性-脆性破坏和脆性破坏。每一种模式都对应于特定晶片形态的形成,分别是细粉晶片、片状晶片和块状晶片。此外,这些模式符合三个分段函数(SE∝d0、SE∝d - 0.6和SE∝d - 1.1)和不同的破坏区(破碎区、塑性流动区和主破坏区)。值得注意的是,临界过渡切割深度随围压近似线性增加。随着围压的升高,裂纹扩展减小,最终局限于切削尖端正前方区域。该研究为开发低扰动、高效的深海采矿机械破岩技术提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信