Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth

IF 2.4 2区 数学 Q1 MATHEMATICS
Kai Liu , Xiaoming He , Vicenţiu D. Rădulescu
{"title":"Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth","authors":"Kai Liu ,&nbsp;Xiaoming He ,&nbsp;Vicenţiu D. Rădulescu","doi":"10.1016/j.jde.2025.113570","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the existence and multiplicity of solutions for the <em>p</em>-Laplacian Schrödinger-Poisson system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>γ</mi><mi>ϕ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></mtd><mtd><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> with a prescribed mass given by<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></math></span></span></span> in the Sobolev critical case, where, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>3</mn><mo>,</mo><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, and <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>μ</mi><mo>&gt;</mo><mn>0</mn></math></span> are parameters, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent, and <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-subcritical perturbation <span><math><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></math></span>, with <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mi>p</mi><mo>,</mo><mi>p</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>, and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-supercritical regime: <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mi>p</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, we prove two existence results for normalized solutions under different assumptions for the parameters <span><math><mi>γ</mi><mo>,</mo><mi>μ</mi></math></span>, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the <em>p</em>-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, for the first time.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113570"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005972","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrödinger-Poisson system{Δpu+γϕ|u|p2u=λ|u|p2u+μ|u|q2u+|u|p2u,inR3,Δϕ=|u|p,inR3, with a prescribed mass given byR3|u|pdx=ap, in the Sobolev critical case, where, 1<p<3,a>0, and γ>0, μ>0 are parameters, p=3p3p is the Sobolev critical exponent, and λR is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the Lp-subcritical perturbation μ|u|q2u, with q(p,p+p23), and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the Lp-supercritical regime: q(p+p23,p), we prove two existence results for normalized solutions under different assumptions for the parameters γ,μ, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the p-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space R3, for the first time.
临界生长p-拉普拉斯Schrödinger-Poisson体系的规定质量解
本文研究了在Sobolev临界情况下,p-拉普拉斯Schrödinger-Poisson系统{−Δpu+γ φ |u|p−2u=λ|u|p−2u+μ|u|q−2u+|u|p−2u,inR3,−Δϕ=|u|p,inR3,规定质量为∫R3|u|pdx=ap的解的存在性和多重性,其中,1<p<3,a>0, γ>0, μ>;0为参数,p =3p3−p为Sobolev临界指数,λ∈R为待定参数,作为拉格朗日乘子。我们研究了该系统在lp -亚临界扰动μ|u|q−2u下,q∈(p,p+p23),并利用截断技术、集中紧性原理和属理论建立了该系统的多个归一化解的存在性。在lp -超临界区:q∈(p+p23,p)中,利用Pohozaev流形分析、集中紧性原理和山口定理,证明了参数γ,μ在不同假设下的归一化解的两个存在性结果。本文首次给出了在整个空间R3中被次临界项扰动的p-拉普拉斯临界Schrödinger-Poisson问题的归一化解的存在性和多重性的新贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信