{"title":"Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth","authors":"Kai Liu , Xiaoming He , Vicenţiu D. Rădulescu","doi":"10.1016/j.jde.2025.113570","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we focus on the existence and multiplicity of solutions for the <em>p</em>-Laplacian Schrödinger-Poisson system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>γ</mi><mi>ϕ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></mtd><mtd><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> with a prescribed mass given by<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></math></span></span></span> in the Sobolev critical case, where, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn><mo>,</mo><mi>a</mi><mo>></mo><mn>0</mn></math></span>, and <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>μ</mi><mo>></mo><mn>0</mn></math></span> are parameters, <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><mrow><mn>3</mn><mo>−</mo><mi>p</mi></mrow></mfrac></math></span> is the Sobolev critical exponent, and <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-subcritical perturbation <span><math><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></math></span>, with <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mi>p</mi><mo>,</mo><mi>p</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>, and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-supercritical regime: <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mi>p</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>, we prove two existence results for normalized solutions under different assumptions for the parameters <span><math><mi>γ</mi><mo>,</mo><mi>μ</mi></math></span>, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the <em>p</em>-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, for the first time.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113570"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005972","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrödinger-Poisson system with a prescribed mass given by in the Sobolev critical case, where, , and , are parameters, is the Sobolev critical exponent, and is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the -subcritical perturbation , with , and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the -supercritical regime: , we prove two existence results for normalized solutions under different assumptions for the parameters , by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the p-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space , for the first time.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics