Joining copulas of extreme implicit dependence copulas

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Noppawit Yanpaisan, Tippawan Santiwipanont, Songkiat Sumetkijakan
{"title":"Joining copulas of extreme implicit dependence copulas","authors":"Noppawit Yanpaisan,&nbsp;Tippawan Santiwipanont,&nbsp;Songkiat Sumetkijakan","doi":"10.1016/j.ijar.2025.109518","DOIUrl":null,"url":null,"abstract":"<div><div>Copulas of uniform-<span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> random variables <em>U</em> and <em>V</em> satisfying <span><math><mi>α</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>=</mo><mi>β</mi><mo>(</mo><mi>V</mi><mo>)</mo></math></span> almost surely for some measure-preserving transformations <em>α</em> and <em>β</em> are called <em>implicit dependence copulas</em>. They were recently shown to coincide with the generalized Markov products of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>β</mi><mo>,</mo><mi>e</mi></mrow></msub></math></span> with respect to a class of joining copulas <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub></math></span>. If <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>β</mi><mo>,</mo><mi>e</mi></mrow></msub></math></span> are not two-sided invertible, then most implicit dependence copulas, especially when <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>≡</mo><mi>Π</mi></math></span>, are not extreme points in the class of copulas. For a given pair of left and right invertible copulas <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>e</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>β</mi><mo>,</mo><mi>e</mi></mrow></msub></math></span>, we characterize extreme implicit dependence copulas in terms of the extremality of the joining copulas in the class of subcopulas on a domain involving the invertible copulas. This result is then extended to the multivariate case.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"186 ","pages":"Article 109518"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001598","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Copulas of uniform-(0,1) random variables U and V satisfying α(U)=β(V) almost surely for some measure-preserving transformations α and β are called implicit dependence copulas. They were recently shown to coincide with the generalized Markov products of Ce,α and Cβ,e with respect to a class of joining copulas (At)t[0,1]. If Ce,α and Cβ,e are not two-sided invertible, then most implicit dependence copulas, especially when AtΠ, are not extreme points in the class of copulas. For a given pair of left and right invertible copulas Ce,α and Cβ,e, we characterize extreme implicit dependence copulas in terms of the extremality of the joining copulas in the class of subcopulas on a domain involving the invertible copulas. This result is then extended to the multivariate case.
极端隐式依赖联结的联结联结
对于某些保测度变换α和β,一致-(0,1)随机变量U和V几乎肯定满足α(U)=β(V)的copula称为隐相关copula。它们最近被证明与Ce,α和Cβ,e对一类连接copula (At)t∈[0,1]的广义马尔可夫积相吻合。如果Ce,α和Cβ,e不是双面可逆的,那么大多数隐式相关copula,特别是当At≡Π时,都不是copula类中的极值点。对于给定的一对左右可逆copulce,α和Cβ,e,我们用在包含可逆copulas的定义域上的次copulas类中的联结copulas的极值来表征极端隐相关copulas。然后将此结果推广到多变量情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信