Dynamics of a pest-natural enemy model with natural enemy periodic migration described by time delay

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Jianjun Jiao , Yunpeng Xiao
{"title":"Dynamics of a pest-natural enemy model with natural enemy periodic migration described by time delay","authors":"Jianjun Jiao ,&nbsp;Yunpeng Xiao","doi":"10.1016/j.nonrwa.2025.104454","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a pest-natural enemy model with natural enemy periodic migration described by time delay. The globally attractive conditions for pest-elimination periodic solution <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mover><mrow><mi>P</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow></math></span> of model <span><math><mrow><mo>(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow></math></span> are acquired by methods of mathematical analysis. Permanent conditions of model <span><math><mrow><mo>(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow></math></span> are also provided. Computer-assisted techniques are used to simulate the dynamical behaviors of model <span><math><mrow><mrow><mo>(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span> Furthermore, Systematic sensitivity analysis of parameters are inserted to describe the dynamic interactions between pests and their natural enemies. Our results are more closer to pest management with periodic migration and enrich theories of integrated pest management.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104454"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001403","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a pest-natural enemy model with natural enemy periodic migration described by time delay. The globally attractive conditions for pest-elimination periodic solution (0,0,P(t)˜) of model (2.1) are acquired by methods of mathematical analysis. Permanent conditions of model (2.1) are also provided. Computer-assisted techniques are used to simulate the dynamical behaviors of model (2.1). Furthermore, Systematic sensitivity analysis of parameters are inserted to describe the dynamic interactions between pests and their natural enemies. Our results are more closer to pest management with periodic migration and enrich theories of integrated pest management.
用时滞描述天敌周期性迁移的害虫-天敌模型动力学
在这项工作中,我们提出了一个害虫-天敌模型,其中天敌周期性迁移由时滞描述。通过数学分析方法,得到了模型(2.1)的除虫周期解(0,0,P(t) ~)的全局吸引条件。给出了模型(2.1)的永久条件。计算机辅助技术用于模拟模型的动态行为(2.1)。此外,引入了系统的参数敏感性分析来描述害虫与天敌之间的动态相互作用。本研究结果更接近于害虫周期性迁移管理,丰富了害虫综合治理理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信