A lightweight spiking neural network for EEG-based motor imagery classification

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Herui Zhang, Haoran Wang, Jiayu An, Shitao Zheng, Dongrui Wu
{"title":"A lightweight spiking neural network for EEG-based motor imagery classification","authors":"Herui Zhang,&nbsp;Haoran Wang,&nbsp;Jiayu An,&nbsp;Shitao Zheng,&nbsp;Dongrui Wu","doi":"10.1016/j.neunet.2025.107741","DOIUrl":null,"url":null,"abstract":"<div><div>Spiking neural networks (SNNs) aim to simulate the human brain neural network, using sparse spike event streams for effective and energy-efficient spatio-temporal signal processing. This paper proposes a lightweight SNN model for electroencephalogram (EEG) based motor imagery (MI) classification, a classical brain–computer interface paradigm. The model has three desirable characteristics: (1) it has a brain-inspired architecture; (2) it is energy efficient; and, (3) it is dataset agnostic. Within-subject and cross-subject experiments on three public datasets demonstrated the superiority of our SNN model over four classical convolutional neural network based models in EEG based MI classification.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"191 ","pages":"Article 107741"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025006215","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs) aim to simulate the human brain neural network, using sparse spike event streams for effective and energy-efficient spatio-temporal signal processing. This paper proposes a lightweight SNN model for electroencephalogram (EEG) based motor imagery (MI) classification, a classical brain–computer interface paradigm. The model has three desirable characteristics: (1) it has a brain-inspired architecture; (2) it is energy efficient; and, (3) it is dataset agnostic. Within-subject and cross-subject experiments on three public datasets demonstrated the superiority of our SNN model over four classical convolutional neural network based models in EEG based MI classification.
基于脑电图的运动意象分类的轻量级脉冲神经网络
尖峰神经网络(SNNs)旨在模拟人脑神经网络,利用稀疏的尖峰事件流进行有效和节能的时空信号处理。本文提出了一种轻量级SNN模型,用于基于脑电图(EEG)的运动图像(MI)分类,这是一种经典的脑机接口范式。该模型具有三个理想的特征:(1)具有受大脑启发的架构;(2)节能;(3)与数据集无关。在三个公开数据集上进行的主题内和跨主题实验表明,我们的SNN模型在基于EEG的MI分类中优于四种经典的基于卷积神经网络的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信