Role of electrode materials in resistive switching mechanisms of oxide-based memristors for enhanced neuromorphic computing: A comprehensive study

Armin Gooran-Shoorakchaly, Sarah Sharif, Yaser M. Banad
{"title":"Role of electrode materials in resistive switching mechanisms of oxide-based memristors for enhanced neuromorphic computing: A comprehensive study","authors":"Armin Gooran-Shoorakchaly,&nbsp;Sarah Sharif,&nbsp;Yaser M. Banad","doi":"10.1016/j.memori.2025.100133","DOIUrl":null,"url":null,"abstract":"<div><div>This study extends the state-of-the-art TaOx-based memristors by explicitly coupling electrode-dependent thermal conductivity to the electrical-thermal solver and by treating drift, diffusion, and Soret flux on equal footing. By examining titanium (Ti), palladium (Pd), and tungsten (W) electrodes, conductive filament (CF) dynamics is studied, particularly the role of thermal and electrical properties in governing oxygen vacancy migration. The enriched model reveals that Ti's low thermal conductivity (21.9 W/m·K) lowers the forming voltage to −1.72 V and boosts the peak diffusion flux to 5.4 A/cm<sup>2</sup>, whereas W's high thermal conductivity (174 W/m·K) suppresses filament growth, requiring −2.01 V. This is the first quantitative decomposition of the three vacancy-transport mechanisms under realistic Joule-heating conditions, enabling direct correlation between electrode choice and device variability. Our systematic analysis of drift, diffusion, and Soret flux mechanisms provides deeper insight into CF formation, stability, and device reliability. The insight translates into markedly tighter resistance distributions for Ti devices (σ/μ = 0.011 in LRS) and promising 10,000-s retention at 150 °C, pointing toward electrode-engineered RRAM for reliable neuromorphic computing. These findings underscore how careful electrode material selection can significantly enhance RRAM performance, reliability, and scalability, thereby presenting a promising device platform for neuromorphic and in-memory computing applications.</div></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"11 ","pages":"Article 100133"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064625000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study extends the state-of-the-art TaOx-based memristors by explicitly coupling electrode-dependent thermal conductivity to the electrical-thermal solver and by treating drift, diffusion, and Soret flux on equal footing. By examining titanium (Ti), palladium (Pd), and tungsten (W) electrodes, conductive filament (CF) dynamics is studied, particularly the role of thermal and electrical properties in governing oxygen vacancy migration. The enriched model reveals that Ti's low thermal conductivity (21.9 W/m·K) lowers the forming voltage to −1.72 V and boosts the peak diffusion flux to 5.4 A/cm2, whereas W's high thermal conductivity (174 W/m·K) suppresses filament growth, requiring −2.01 V. This is the first quantitative decomposition of the three vacancy-transport mechanisms under realistic Joule-heating conditions, enabling direct correlation between electrode choice and device variability. Our systematic analysis of drift, diffusion, and Soret flux mechanisms provides deeper insight into CF formation, stability, and device reliability. The insight translates into markedly tighter resistance distributions for Ti devices (σ/μ = 0.011 in LRS) and promising 10,000-s retention at 150 °C, pointing toward electrode-engineered RRAM for reliable neuromorphic computing. These findings underscore how careful electrode material selection can significantly enhance RRAM performance, reliability, and scalability, thereby presenting a promising device platform for neuromorphic and in-memory computing applications.
电极材料在增强神经形态计算的氧化基忆阻器电阻开关机制中的作用:一项综合研究
本研究通过明确地将电极相关导热系数耦合到电-热求解器,并在同等基础上处理漂移、扩散和索氏通量,扩展了最先进的基于陶氏的忆阻器。通过检测钛(Ti)、钯(Pd)和钨(W)电极,研究了导电丝(CF)的动力学,特别是热学和电学性质在控制氧空位迁移中的作用。强化模型表明,Ti的低导热系数(21.9 W/m·K)使成型电压降至- 1.72 V,使峰值扩散通量提高到5.4 A/cm2,而W的高导热系数(174 W/m·K)抑制了灯丝的生长,需要- 2.01 V。这是在实际焦耳加热条件下对三种空位输运机制的第一次定量分解,使电极选择和器件可变性之间的直接关联成为可能。我们对漂移、扩散和Soret磁通机制的系统分析为CF的形成、稳定性和设备可靠性提供了更深入的见解。这一见解转化为Ti器件的电阻分布明显更紧密(LRS中的σ/μ = 0.011),并有望在150°C下保持10,000-s,这表明电极工程RRAM可用于可靠的神经形态计算。这些发现强调了精心选择电极材料可以显著提高RRAM的性能、可靠性和可扩展性,从而为神经形态和内存计算应用提供了一个有前途的设备平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信