Yahui Wang , Zhoushuo Liang , Pengfei Tian , Yue He
{"title":"An interpretable stacking ensemble learning model for visual-manual distraction level classification for in-vehicle interactions","authors":"Yahui Wang , Zhoushuo Liang , Pengfei Tian , Yue He","doi":"10.1016/j.aap.2025.108150","DOIUrl":null,"url":null,"abstract":"<div><div>Recognizing the level of driver distraction during the execution of secondary tasks within the intelligent cockpit is crucial for ensuring a seamless interaction between human drivers and intelligent vehicle systems. To address this issue, this paper proposes a framework for recognizing driver distraction levels that integrates clustering, classification, and interpretability. First, Feature Selection with Optimal Graph(SF<sup>2</sup>SOG) is employed to identify discriminative features from the data facilitating dimensionality reduction. Following this, Agglomerative Clustering are employed to classify the gathered unlabeled data on driving distraction behaviors into three distinct categories. Additionally, a heuristic-based stacking ensemble model is introduced to identify the levels of driver distraction, using the factors that influence these levels as input parameters for classification. To improve the effectiveness of the stacking model, three diverse classifiers adaptive boosting (AdaBoost)、random forest (RF) and extreme gradient boosting (XGBoost) are selected to serve as the base models, while a relatively simple yet accurate model logistic regression (LR) is used as the <em>meta</em>-classifier. Finally, Shapley Additive exPlanations (SHAP) is employed for interpretability analysis. Notably, heuristic-based stacking ensemble model achieved a commendable accuracy rate of 96.25%, highlighting its significant advantage. Further analysis shows that higher maximum pupil diameter (maxPD) and mean pupil diameter (meanPD) indicate increased distraction, while greater glance frequency and lane deviation reflect reduced situational awareness and control. These findings are crucial for reducing accidents and enhancing driving safety in the era of intelligent vehicles.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"220 ","pages":"Article 108150"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525002362","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing the level of driver distraction during the execution of secondary tasks within the intelligent cockpit is crucial for ensuring a seamless interaction between human drivers and intelligent vehicle systems. To address this issue, this paper proposes a framework for recognizing driver distraction levels that integrates clustering, classification, and interpretability. First, Feature Selection with Optimal Graph(SF2SOG) is employed to identify discriminative features from the data facilitating dimensionality reduction. Following this, Agglomerative Clustering are employed to classify the gathered unlabeled data on driving distraction behaviors into three distinct categories. Additionally, a heuristic-based stacking ensemble model is introduced to identify the levels of driver distraction, using the factors that influence these levels as input parameters for classification. To improve the effectiveness of the stacking model, three diverse classifiers adaptive boosting (AdaBoost)、random forest (RF) and extreme gradient boosting (XGBoost) are selected to serve as the base models, while a relatively simple yet accurate model logistic regression (LR) is used as the meta-classifier. Finally, Shapley Additive exPlanations (SHAP) is employed for interpretability analysis. Notably, heuristic-based stacking ensemble model achieved a commendable accuracy rate of 96.25%, highlighting its significant advantage. Further analysis shows that higher maximum pupil diameter (maxPD) and mean pupil diameter (meanPD) indicate increased distraction, while greater glance frequency and lane deviation reflect reduced situational awareness and control. These findings are crucial for reducing accidents and enhancing driving safety in the era of intelligent vehicles.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.