Exponentially accurate spectral Monte Carlo method for linear PDEs and their error estimates

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jiaying Feng, Changtao Sheng, Chenglong Xu
{"title":"Exponentially accurate spectral Monte Carlo method for linear PDEs and their error estimates","authors":"Jiaying Feng,&nbsp;Changtao Sheng,&nbsp;Chenglong Xu","doi":"10.1016/j.apnum.2025.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a spectral Monte Carlo iterative method (SMC) for solving linear Poisson and parabolic equations driven by <em>α</em>-stable Lévy processes with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, which was initially proposed and developed by Gobet and Maire in their pioneering works ((2004) <span><span>[24]</span></span>, and (2005) <span><span>[25]</span></span>) for the case <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>. The novel method effectively integrates multiple computational techniques, including the interpolation based on generalized Jacobi functions (GJFs), space-time spectral methods, control variates techniques, and a novel walk-on-spheres method (WOS). The exponential convergence of the error bounds is rigorously established through finite iterations for both Poisson and parabolic equations involving the integral fractional Laplacian operator. Remarkably, the proposed space-time spectral Monte Carlo method (ST-SMC) for the parabolic equation is unified for both <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>. Extensive numerical results are provided to demonstrate the spectral accuracy and efficiency of the proposed method, thereby validating the theoretical findings.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 278-297"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001278","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a spectral Monte Carlo iterative method (SMC) for solving linear Poisson and parabolic equations driven by α-stable Lévy processes with α(0,2), which was initially proposed and developed by Gobet and Maire in their pioneering works ((2004) [24], and (2005) [25]) for the case α=2. The novel method effectively integrates multiple computational techniques, including the interpolation based on generalized Jacobi functions (GJFs), space-time spectral methods, control variates techniques, and a novel walk-on-spheres method (WOS). The exponential convergence of the error bounds is rigorously established through finite iterations for both Poisson and parabolic equations involving the integral fractional Laplacian operator. Remarkably, the proposed space-time spectral Monte Carlo method (ST-SMC) for the parabolic equation is unified for both α(0,2) and α=2. Extensive numerical results are provided to demonstrate the spectral accuracy and efficiency of the proposed method, thereby validating the theoretical findings.
线性偏微分方程的指数精度谱蒙特卡罗方法及其误差估计
本文介绍了求解α∈(0,2)α-稳定lsamvy过程驱动的线性泊松方程和抛物方程的谱蒙特卡罗迭代法(SMC),该方法最初是由Gobet和Maire在他们的开创性著作((2004)[24]和(2005)[25])中提出和发展的,适用于α=2的情况。该方法有效地集成了多种计算技术,包括基于广义雅可比函数(GJFs)的插值、时空谱法、控制变量技术和一种新的球体行走法(WOS)。通过有限迭代,严格地建立了含分数阶拉普拉斯算子的泊松方程和抛物方程误差界的指数收敛性。值得注意的是,对于α∈(0,2)和α=2,所提出的抛物方程的空时谱蒙特卡罗方法(ST-SMC)是统一的。大量的数值结果证明了该方法的光谱精度和效率,从而验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信