{"title":"Numerical method and analysis for fluid-structure model on unbounded domains","authors":"Hongwei Li, Xinyue Chen","doi":"10.1016/j.apnum.2025.06.009","DOIUrl":null,"url":null,"abstract":"<div><div>Numerically solving the fluid-structure model on unbounded domains poses a challenge, due to the unbounded nature of the physical domain. To overcome this challenge, the artificial boundary method is specifically applied to numerically solve the fluid-structure model on unbounded domains, which can be used to analyze fluid-structure interactions in various scientific and engineering fields. Drawing inspiration from the artificial boundary method, we employ artificial boundaries to truncate the unbounded domain, subsequently designing the high order local artificial boundary conditions thereon based on the Padé approximation. Then, the initial value problem on the unbounded domain is reduced into an initial boundary value problem on the computational domain, which can be efficiently solved by adopting the finite difference method. Furthermore, a series of auxiliary variables is introduced specifically to address the issue of mixed derivatives arising in the artificial boundary conditions, and the stability, convergence and solvability of the reduced problem are rigorously analyzed. Numerical experiments are reported to demonstrate the effectiveness of artificial boundary conditions and theoretical analysis.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 255-277"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001266","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Numerically solving the fluid-structure model on unbounded domains poses a challenge, due to the unbounded nature of the physical domain. To overcome this challenge, the artificial boundary method is specifically applied to numerically solve the fluid-structure model on unbounded domains, which can be used to analyze fluid-structure interactions in various scientific and engineering fields. Drawing inspiration from the artificial boundary method, we employ artificial boundaries to truncate the unbounded domain, subsequently designing the high order local artificial boundary conditions thereon based on the Padé approximation. Then, the initial value problem on the unbounded domain is reduced into an initial boundary value problem on the computational domain, which can be efficiently solved by adopting the finite difference method. Furthermore, a series of auxiliary variables is introduced specifically to address the issue of mixed derivatives arising in the artificial boundary conditions, and the stability, convergence and solvability of the reduced problem are rigorously analyzed. Numerical experiments are reported to demonstrate the effectiveness of artificial boundary conditions and theoretical analysis.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.