{"title":"Numerical simulation of a dynamic human capital model with demographic delays via the local discrete Galerkin method","authors":"Yadollah Ordokhani , Alireza Hosseinian , Pouria Assari","doi":"10.1016/j.apnum.2025.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>A strong and dynamic economy depends on various factors, with human capital playing a crucial role in fostering resilience and adaptability in an ever-changing world. Human capital, which depends on the past behavior of the system, requires strategic investments in education, health, and skill development. This study presents a numerical approach for solving the human capital model with age-structured delays, formulated as integro-differential equations with double delays and difference kernels. The proposed method employs a local meshless discrete Galerkin approach based on the moving least squares (MLS) technique, which can work with irregular or non-uniform data. The localized nature of the MLS scheme enhances computational efficiency by focusing on small neighborhoods. Moreover, the stabilized MLS framework, achieved by using shifted and scaled polynomial basis functions, enhances numerical stability and reduces sensitivity to the distribution of nodes, thereby transferring these advantageous properties to the method. The simplicity of the proposed algorithm makes it easy to implement on standard personal computers and extend to a wider class of delay integro-differential equations. To assess its reliability, we analyzed its error and determined the convergence order of the presented method. We have applied it to solve several numerical examples, and the obtained results confirm the method's accuracy, stability, and alignment with theoretical findings.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 234-254"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001242","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A strong and dynamic economy depends on various factors, with human capital playing a crucial role in fostering resilience and adaptability in an ever-changing world. Human capital, which depends on the past behavior of the system, requires strategic investments in education, health, and skill development. This study presents a numerical approach for solving the human capital model with age-structured delays, formulated as integro-differential equations with double delays and difference kernels. The proposed method employs a local meshless discrete Galerkin approach based on the moving least squares (MLS) technique, which can work with irregular or non-uniform data. The localized nature of the MLS scheme enhances computational efficiency by focusing on small neighborhoods. Moreover, the stabilized MLS framework, achieved by using shifted and scaled polynomial basis functions, enhances numerical stability and reduces sensitivity to the distribution of nodes, thereby transferring these advantageous properties to the method. The simplicity of the proposed algorithm makes it easy to implement on standard personal computers and extend to a wider class of delay integro-differential equations. To assess its reliability, we analyzed its error and determined the convergence order of the presented method. We have applied it to solve several numerical examples, and the obtained results confirm the method's accuracy, stability, and alignment with theoretical findings.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.