Extending a result of Carlitz and McConnel to polynomials which are not permutations

IF 1.2 3区 数学 Q1 MATHEMATICS
Bence Csajbók
{"title":"Extending a result of Carlitz and McConnel to polynomials which are not permutations","authors":"Bence Csajbók","doi":"10.1016/j.ffa.2025.102683","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> denote the set of directions determined by the graph of a polynomial <em>f</em> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, where <em>q</em> is a power of the prime <em>p</em>. If <em>D</em> is contained in a multiplicative subgroup <em>M</em> of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span>, then by a result of Carlitz and McConnel it follows that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></msup><mo>+</mo><mi>b</mi></math></span> for some <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. Of course, if <span><math><mi>D</mi><mo>⊆</mo><mi>M</mi></math></span>, then <span><math><mn>0</mn><mo>∉</mo><mi>D</mi></math></span> and hence <em>f</em> is a permutation. If we assume the weaker condition <span><math><mi>D</mi><mo>⊆</mo><mi>M</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>, then <em>f</em> is not necessarily a permutation, but Sziklai conjectured that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></msup><mo>+</mo><mi>b</mi></math></span> follows also in this case. When <em>q</em> is odd, and the index of <em>M</em> is even, then a result of Ball, Blokhuis, Brouwer, Storme and Szőnyi combined with a result of Göloğlu and McGuire proves the conjecture. Assume <span><math><mi>deg</mi><mo>⁡</mo><mi>f</mi><mo>≥</mo><mn>1</mn></math></span>. We prove that if the size of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>D</mi><mo>=</mo><mo>{</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>d</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>d</mi><mo>∈</mo><mi>D</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>d</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>D</mi><mo>}</mo></math></span> is less than <span><math><mi>q</mi><mo>−</mo><mi>deg</mi><mo>⁡</mo><mi>f</mi><mo>+</mo><mn>2</mn></math></span>, then <em>f</em> is a permutation of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We use this result to prove the conjecture of Sziklai.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102683"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let D denote the set of directions determined by the graph of a polynomial f of Fq[x], where q is a power of the prime p. If D is contained in a multiplicative subgroup M of Fq×, then by a result of Carlitz and McConnel it follows that f(x)=axpk+b for some kN. Of course, if DM, then 0D and hence f is a permutation. If we assume the weaker condition DM{0}, then f is not necessarily a permutation, but Sziklai conjectured that f(x)=axpk+b follows also in this case. When q is odd, and the index of M is even, then a result of Ball, Blokhuis, Brouwer, Storme and Szőnyi combined with a result of Göloğlu and McGuire proves the conjecture. Assume degf1. We prove that if the size of D1D={d1d:dD{0},dD} is less than qdegf+2, then f is a permutation of Fq. We use this result to prove the conjecture of Sziklai.
将Carlitz和McConnel的结果推广到非置换多项式
设D表示由Fq[x]的多项式f的图确定的方向集,其中q是素数p的幂。如果D包含在fqx的乘法子群M中,则根据Carlitz和McConnel的结果,可以得出对于k∈N, f(x)=axpk+b。当然,若D∈M,则0∈D,故f是一个置换。如果我们假设弱条件D≥M∪{0},则f不一定是一个置换,但Sziklai推测在这种情况下f(x)=axpk+b也成立。当q为奇数,M的指标为偶数时,Ball、Blokhuis、browwer、Storme和Szőnyi的结果结合Göloğlu和McGuire的结果证明了猜想。假设度⁡f≥1。证明了如果D−1D的大小={D−1D ': D∈D∈{0},D '∈D}小于q−deg (f+2),则f是Fq的一个置换。我们用这个结果证明了Sziklai的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信