Empowering perovskite modules for solar and indoor lighting applications by 1,8-diiodooctane/phenethylammonium iodide 2D perovskite passivation strategy
Francineide Lopes de Araujo , Maurizio Stefanelli , Antonio Agresti , Sara Pescetelli , Alessia Di Vito , Matthias Auf Der Maur , Luigi Vesce , Ana Flavia Nogueira , Aldo Di Carlo
{"title":"Empowering perovskite modules for solar and indoor lighting applications by 1,8-diiodooctane/phenethylammonium iodide 2D perovskite passivation strategy","authors":"Francineide Lopes de Araujo , Maurizio Stefanelli , Antonio Agresti , Sara Pescetelli , Alessia Di Vito , Matthias Auf Der Maur , Luigi Vesce , Ana Flavia Nogueira , Aldo Di Carlo","doi":"10.1016/j.nanoen.2025.111279","DOIUrl":null,"url":null,"abstract":"<div><div>To accelerate commercialization of perovskite technology and its use in multiple application fields, several device processing strategies have been developed. These efforts primarily target scaling-up device fabrication for mass production and enhancing performance for different light sources (sun or indoor light). This work presents a novel 3D/2D perovskite heterostructure by depositing a mixed layer of phenethylammonium iodide (PEAI) and 1,8-diiodooctane (DIO) directly atop the 3D perovskite absorber without a further annealing step. The addition of DIO enables the formation of pure 2D PEA₂PbI₄ 4 (n = 1) at room temperature, leading to defect passivation of 3D perovskite surface, improvement in the crystallinity of 2D perovskite, and optimizing the dipole moment at perovskite/hole transport interface. Large-area PSC modules treated with PEAI:DIO achieve remarkable power conversion efficiencies of 17.7 % (32 cm²) and 15.6 % (121 cm²) under 1Sun irradiation. When exposed to indoor illumination with various LED intensities (200, 500 and 1000 lux) the PEAI:DIO engineered module demonstrated efficiency approaching 34 %, among the highest reported so far for large area modules employing perovskite with bandgap below 1.7 eV. Long-term stability tests following the ISOS-D-1 protocol reveal a threefold increase in T<sub>80</sub> lifetime compared to untreated devices.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"142 ","pages":"Article 111279"},"PeriodicalIF":16.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221128552500638X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To accelerate commercialization of perovskite technology and its use in multiple application fields, several device processing strategies have been developed. These efforts primarily target scaling-up device fabrication for mass production and enhancing performance for different light sources (sun or indoor light). This work presents a novel 3D/2D perovskite heterostructure by depositing a mixed layer of phenethylammonium iodide (PEAI) and 1,8-diiodooctane (DIO) directly atop the 3D perovskite absorber without a further annealing step. The addition of DIO enables the formation of pure 2D PEA₂PbI₄ 4 (n = 1) at room temperature, leading to defect passivation of 3D perovskite surface, improvement in the crystallinity of 2D perovskite, and optimizing the dipole moment at perovskite/hole transport interface. Large-area PSC modules treated with PEAI:DIO achieve remarkable power conversion efficiencies of 17.7 % (32 cm²) and 15.6 % (121 cm²) under 1Sun irradiation. When exposed to indoor illumination with various LED intensities (200, 500 and 1000 lux) the PEAI:DIO engineered module demonstrated efficiency approaching 34 %, among the highest reported so far for large area modules employing perovskite with bandgap below 1.7 eV. Long-term stability tests following the ISOS-D-1 protocol reveal a threefold increase in T80 lifetime compared to untreated devices.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.