Sunny Howard, Jannik Esslinger, Nils Weiße, Jakob Schröder, Christoph Eberle, Robin H. W. Wang, Stefan Karsch, Peter Norreys, Andreas Döpp
{"title":"Single-shot spatiotemporal vector field measurements of petawatt laser pulses","authors":"Sunny Howard, Jannik Esslinger, Nils Weiße, Jakob Schröder, Christoph Eberle, Robin H. W. Wang, Stefan Karsch, Peter Norreys, Andreas Döpp","doi":"10.1038/s41566-025-01698-x","DOIUrl":null,"url":null,"abstract":"<p>The control of light’s various degrees of freedom underpins modern physics and technology, from quantum optics to telecommunications. Ultraintense lasers represent the pinnacle of this control, concentrating light to extreme intensities at which electrons oscillate at relativistic velocities within a single optical cycle. These extraordinary conditions offer unique opportunities to probe the fundamental aspects of light–matter interactions and develop transformative applications. However, the precise characterization of intense, ultrashort lasers has lagged behind our ability to generate them, creating a bottleneck in advancing laser science and its applications. Here we present the first single-shot vector field measurement technique for intense, ultrashort laser pulses that provides an unprecedented insight into their complete spatiotemporal and polarization structure, including quantified uncertainties. Our method efficiently encodes the full vector field onto a two-dimensional detector by leveraging the inherent properties of these laser pulses, allowing for real-time characterization. We demonstrate its capabilities on systems ranging from high-repetition-rate oscillators to petawatt-class lasers, revealing subtle spatiotemporal couplings and polarization effects. This advancement bridges the gap between theory and experiment in laser physics, providing crucial data for simulations and accelerating the development of novel applications in high-field physics, laser–matter interactions, future energy solutions and beyond.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"26 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01698-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The control of light’s various degrees of freedom underpins modern physics and technology, from quantum optics to telecommunications. Ultraintense lasers represent the pinnacle of this control, concentrating light to extreme intensities at which electrons oscillate at relativistic velocities within a single optical cycle. These extraordinary conditions offer unique opportunities to probe the fundamental aspects of light–matter interactions and develop transformative applications. However, the precise characterization of intense, ultrashort lasers has lagged behind our ability to generate them, creating a bottleneck in advancing laser science and its applications. Here we present the first single-shot vector field measurement technique for intense, ultrashort laser pulses that provides an unprecedented insight into their complete spatiotemporal and polarization structure, including quantified uncertainties. Our method efficiently encodes the full vector field onto a two-dimensional detector by leveraging the inherent properties of these laser pulses, allowing for real-time characterization. We demonstrate its capabilities on systems ranging from high-repetition-rate oscillators to petawatt-class lasers, revealing subtle spatiotemporal couplings and polarization effects. This advancement bridges the gap between theory and experiment in laser physics, providing crucial data for simulations and accelerating the development of novel applications in high-field physics, laser–matter interactions, future energy solutions and beyond.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.