Engineering durable nitrate-enriched solvation sheaths in carbonate electrolytes through functional separator design for high-voltage lithium metal batteries
Can Liao , Tuning Zheng , Junfei Zhu , Xin Lin , Song Duan , Jianhua Xiao , Wei Wang , Yun Zheng , Wei Yan , Jiujun Zhang
{"title":"Engineering durable nitrate-enriched solvation sheaths in carbonate electrolytes through functional separator design for high-voltage lithium metal batteries","authors":"Can Liao , Tuning Zheng , Junfei Zhu , Xin Lin , Song Duan , Jianhua Xiao , Wei Wang , Yun Zheng , Wei Yan , Jiujun Zhang","doi":"10.1016/j.nanoen.2025.111283","DOIUrl":null,"url":null,"abstract":"<div><div>Dendrite growth and high-voltage capacity fade conundrums persist as key barriers in lithium-metal batteries (LMBs). Although LiNO<sub>3</sub> effectively optimizes interfacial chemistry as an electrolyte additive, its application remains hampered by limited carbonate-electrolyte solubility and self-depleting behavior during extended cycling. This study presents an innovative interfacial engineering strategy through the strategic incorporation of LiNO<sub>3</sub>-impregnated hollow mesoporous silica composites (HMS@LiNO<sub>3</sub>) onto separator surfaces to achieve dual-interface modulation. Capitalizing on the strong adsorption capability of HMS within the high-dielectric ethylene carbonate, a nitrate-rich solvation structure is lastingly established at the anode interface. The configuration facilitates the formation of a Li<sub>3</sub>N-enriched solid electrolyte interphase with superior ionic conductivity, effectively enhancing lithium deposition kinetics while inhibiting dendritic growth. Concurrently, the cathode interface benefits from a controlled nitrate-lean solvation sheath that preferentially undergoes oxidative decomposition, generating a robust protective layer to mitigate electrolyte decomposition under 4.5 V operation. As a result, the lifetime in Li plating/stripping exceeds 1800 h and the average Coulombic efficiency is as high as 98.25 % over 350 cycles. The matched NCM811//Li full cell exhibits a high-capacity retention rate of 80.38 % after 500 cycles at a cut-off voltage of 4.5 V, providing valuable guidance into the development of long-life high-voltage LMBs.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"142 ","pages":"Article 111283"},"PeriodicalIF":16.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525006421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dendrite growth and high-voltage capacity fade conundrums persist as key barriers in lithium-metal batteries (LMBs). Although LiNO3 effectively optimizes interfacial chemistry as an electrolyte additive, its application remains hampered by limited carbonate-electrolyte solubility and self-depleting behavior during extended cycling. This study presents an innovative interfacial engineering strategy through the strategic incorporation of LiNO3-impregnated hollow mesoporous silica composites (HMS@LiNO3) onto separator surfaces to achieve dual-interface modulation. Capitalizing on the strong adsorption capability of HMS within the high-dielectric ethylene carbonate, a nitrate-rich solvation structure is lastingly established at the anode interface. The configuration facilitates the formation of a Li3N-enriched solid electrolyte interphase with superior ionic conductivity, effectively enhancing lithium deposition kinetics while inhibiting dendritic growth. Concurrently, the cathode interface benefits from a controlled nitrate-lean solvation sheath that preferentially undergoes oxidative decomposition, generating a robust protective layer to mitigate electrolyte decomposition under 4.5 V operation. As a result, the lifetime in Li plating/stripping exceeds 1800 h and the average Coulombic efficiency is as high as 98.25 % over 350 cycles. The matched NCM811//Li full cell exhibits a high-capacity retention rate of 80.38 % after 500 cycles at a cut-off voltage of 4.5 V, providing valuable guidance into the development of long-life high-voltage LMBs.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.