Broadband Emission‐Enabled Energy Transfer in Double Perovskites for Efficient Er3+‐Driven Long‐Wavelength Near‐Infrared Optoelectronics

IF 10 1区 物理与天体物理 Q1 OPTICS
Ruixin Song, Yuhang Fang, Enhui Wang, Shangwei Zhou, Wei Li, Yuqi Wang, Tianyuan Wang, Renhuan Song, Hao Yang, Tingting Zhou, Hongwei Song, Donglei Zhou
{"title":"Broadband Emission‐Enabled Energy Transfer in Double Perovskites for Efficient Er3+‐Driven Long‐Wavelength Near‐Infrared Optoelectronics","authors":"Ruixin Song, Yuhang Fang, Enhui Wang, Shangwei Zhou, Wei Li, Yuqi Wang, Tianyuan Wang, Renhuan Song, Hao Yang, Tingting Zhou, Hongwei Song, Donglei Zhou","doi":"10.1002/lpor.202501112","DOIUrl":null,"url":null,"abstract":"High‐efficiency near‐infrared (NIR) light‐emitting diodes (LEDs) operating in 800‐2000 nm spectral window are pivotal for advancing optical communication, biomedical imaging, and security sensing. Here, a strategy using double perovskite Cs<jats:sub>2</jats:sub>AgInCl<jats:sub>6</jats:sub> nanocrystals co‐doped with Bi<jats:sup>3+</jats:sup>, Yb<jats:sup>3+</jats:sup>, and heavily doped Er<jats:sup>3+</jats:sup> is demonstrated to achieve efficient long‐wavelength NIR emission. The double perovskite host with self‐trapped excitons (STEs) property serves as an energy reservoir for subsequent transfer to Er<jats:sup>3+</jats:sup>. Bi<jats:sup>3+</jats:sup> doping induces lattice distortion, enhancing STEs formation and breaking octahedral symmetry around Er<jats:sup>3+</jats:sup> to boost the <jats:sup>4</jats:sup>I<jats:sub>13/2</jats:sub>→<jats:sup>4</jats:sup>I<jats:sub>15/2</jats:sub> transition. Yb<jats:sup>3+</jats:sup> as a sensitizer, bridges the energy gap between STEs and Er<jats:sup>3+</jats:sup>, facilitating efficient energy transfer to populate Er<jats:sup>3+</jats:sup> metastable states. This synergistic mechanism, enabled by double perovskite's broadband emission and homovalent doping tolerance, allows heavy Er<jats:sup>3+</jats:sup> loading (≥20% molar‐ratio), driving a photoluminescence quantum yield of 31% at 1540 nm. NIR LEDs fabricated with these nanocrystals achieve a champion external quantum efficiency (EQE) of 1.79% at 1540 nm (average EQE: 1.49%) and maintain 50% emission intensity for 3.3 h under continuous operation. This work establishes double perovskites as a versatile platform for STEs‐mediated NIR emission, offering a new paradigm for designing high‐performance long‐wavelength optoelectronic devices.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"249 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501112","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

High‐efficiency near‐infrared (NIR) light‐emitting diodes (LEDs) operating in 800‐2000 nm spectral window are pivotal for advancing optical communication, biomedical imaging, and security sensing. Here, a strategy using double perovskite Cs2AgInCl6 nanocrystals co‐doped with Bi3+, Yb3+, and heavily doped Er3+ is demonstrated to achieve efficient long‐wavelength NIR emission. The double perovskite host with self‐trapped excitons (STEs) property serves as an energy reservoir for subsequent transfer to Er3+. Bi3+ doping induces lattice distortion, enhancing STEs formation and breaking octahedral symmetry around Er3+ to boost the 4I13/24I15/2 transition. Yb3+ as a sensitizer, bridges the energy gap between STEs and Er3+, facilitating efficient energy transfer to populate Er3+ metastable states. This synergistic mechanism, enabled by double perovskite's broadband emission and homovalent doping tolerance, allows heavy Er3+ loading (≥20% molar‐ratio), driving a photoluminescence quantum yield of 31% at 1540 nm. NIR LEDs fabricated with these nanocrystals achieve a champion external quantum efficiency (EQE) of 1.79% at 1540 nm (average EQE: 1.49%) and maintain 50% emission intensity for 3.3 h under continuous operation. This work establishes double perovskites as a versatile platform for STEs‐mediated NIR emission, offering a new paradigm for designing high‐performance long‐wavelength optoelectronic devices.
高效Er3+驱动长波近红外光电的双钙钛矿宽带发射能转移
在800 - 2000 nm光谱窗口内工作的高效近红外(NIR)发光二极管(led)对于推进光通信、生物医学成像和安全传感至关重要。在这里,使用双钙钛矿Cs2AgInCl6纳米晶体共掺杂Bi3+, Yb3+和重掺杂Er3+的策略被证明可以实现高效的长波近红外发射。具有自捕获激子(STEs)性质的双钙钛矿宿主充当随后向Er3+转移的能量库。Bi3+掺杂导致晶格畸变,增强了STEs的形成,打破了Er3+周围的八面体对称,促进了4I13/2→4I15/2的转变。Yb3+作为敏化剂,弥补了STEs和Er3+之间的能量缺口,促进了Er3+亚稳态的有效能量转移。这种协同机制由双钙钛矿的宽带发射和同价掺杂耐受能力实现,允许重Er3+负载(≥20%摩尔比),在1540 nm处驱动31%的光致发光量子产率。用这些纳米晶体制造的近红外led在1540 nm处获得了1.79%的外量子效率(EQE)(平均EQE为1.49%),并在连续工作3.3小时内保持50%的发射强度。这项工作建立了双钙钛矿作为STEs介导的近红外发射的通用平台,为设计高性能长波光电器件提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信