Instability of marginally outer trapped surfaces from initial data set symmetry

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Abbas M Sherif
{"title":"Instability of marginally outer trapped surfaces from initial data set symmetry","authors":"Abbas M Sherif","doi":"10.1088/1361-6382/ade58b","DOIUrl":null,"url":null,"abstract":"Let be an initial data set and let xa be a symmetry vector of . Consider a marginally outer trapped surface in and let the symmetry vector be decomposable along the unit normal to in , and along . In this note we present some basic results with regards to the stability of . The vector decomposition allows us to characterize the instability of by the nature of the zero set of the normal component to and the divergence of the component along . Further observations are made under the assumption of having a constant mean curvature, and being an Einstein manifold.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"70 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ade58b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let be an initial data set and let xa be a symmetry vector of . Consider a marginally outer trapped surface in and let the symmetry vector be decomposable along the unit normal to in , and along . In this note we present some basic results with regards to the stability of . The vector decomposition allows us to characterize the instability of by the nature of the zero set of the normal component to and the divergence of the component along . Further observations are made under the assumption of having a constant mean curvature, and being an Einstein manifold.
从初始数据集对称性看边缘外捕获面的不稳定性
设为初始数据集,设xa为的对称向量。考虑一个边缘外的被困表面,让对称向量沿着垂直于in的单位分解,沿着。在这篇笔记中,我们提出了关于的稳定性的一些基本结果。向量分解允许我们通过法向分量的零集和分量沿的散度的性质来表征的不稳定性。进一步的观察是在具有恒定平均曲率的假设下进行的,并且是爱因斯坦流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信