A cost-effective all-in-one halide material for all-solid-state batteries

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-06-25 DOI:10.1038/s41586-025-09153-1
Jiamin Fu, Changhong Wang, Shuo Wang, Joel W. Reid, Jianwen Liang, Jing Luo, Jung Tae Kim, Yang Zhao, Xiaofei Yang, Feipeng Zhao, Weihan Li, Bolin Fu, Xiaoting Lin, Yang Hu, Han Su, Xiaoge Hao, Yingjie Gao, Shutao Zhang, Ziqing Wang, Jue Liu, Hamid Abdolvand, Tsun-Kong Sham, Yifei Mo, Xueliang Sun
{"title":"A cost-effective all-in-one halide material for all-solid-state batteries","authors":"Jiamin Fu, Changhong Wang, Shuo Wang, Joel W. Reid, Jianwen Liang, Jing Luo, Jung Tae Kim, Yang Zhao, Xiaofei Yang, Feipeng Zhao, Weihan Li, Bolin Fu, Xiaoting Lin, Yang Hu, Han Su, Xiaoge Hao, Yingjie Gao, Shutao Zhang, Ziqing Wang, Jue Liu, Hamid Abdolvand, Tsun-Kong Sham, Yifei Mo, Xueliang Sun","doi":"10.1038/s41586-025-09153-1","DOIUrl":null,"url":null,"abstract":"All-solid-state batteries require advanced cathode designs to realize their potential for high energy density and economic viability1–3. Integrated all-in-one cathodes, which eliminate inactive conductive additives and heterogeneous interfaces, hold promise for substantial energy and stability gains but are hindered by materials lacking sufficient Li+/e− conductivity, mechanical robustness and structural stability4–14. Here we present Li1.3Fe1.2Cl4, a cost-effective halide material that overcomes these challenges. Leveraging reversible Fe2+/Fe3+ redox and rapid Li+/e− transport within its framework, Li1.3Fe1.2Cl4 achieves an electrode energy density of 529.3 Wh kg−1 versus Li+/Li. Critically, Li1.3Fe1.2Cl4 shows unique dynamic properties during cycling, including reversible local Fe migration and a brittle-to-ductile transition that confers self-healing behaviour. This enables exceptional cycling stability, maintaining 90% capacity retention for 3,000 cycles at a rate of 5 C. Integration of Li1.3Fe1.2Cl4 with a nickel-rich layered oxide further increases the energy density to 725.6 Wh kg−1. By harnessing the advantageous dynamic mechanical and diffusion properties of all-in-one halides, this work establishes all-in-one halides as an avenue for energy-dense, durable cathodes in next-generation all-solid-state batteries. A cost-effective all-in-one halide cathode material with high energy density and exceptional cycling stability can be used to achieve energy-dense, durable cathodes for the next generation of all-solid-state batteries.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8070","pages":"111-118"},"PeriodicalIF":48.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09153-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state batteries require advanced cathode designs to realize their potential for high energy density and economic viability1–3. Integrated all-in-one cathodes, which eliminate inactive conductive additives and heterogeneous interfaces, hold promise for substantial energy and stability gains but are hindered by materials lacking sufficient Li+/e− conductivity, mechanical robustness and structural stability4–14. Here we present Li1.3Fe1.2Cl4, a cost-effective halide material that overcomes these challenges. Leveraging reversible Fe2+/Fe3+ redox and rapid Li+/e− transport within its framework, Li1.3Fe1.2Cl4 achieves an electrode energy density of 529.3 Wh kg−1 versus Li+/Li. Critically, Li1.3Fe1.2Cl4 shows unique dynamic properties during cycling, including reversible local Fe migration and a brittle-to-ductile transition that confers self-healing behaviour. This enables exceptional cycling stability, maintaining 90% capacity retention for 3,000 cycles at a rate of 5 C. Integration of Li1.3Fe1.2Cl4 with a nickel-rich layered oxide further increases the energy density to 725.6 Wh kg−1. By harnessing the advantageous dynamic mechanical and diffusion properties of all-in-one halides, this work establishes all-in-one halides as an avenue for energy-dense, durable cathodes in next-generation all-solid-state batteries. A cost-effective all-in-one halide cathode material with high energy density and exceptional cycling stability can be used to achieve energy-dense, durable cathodes for the next generation of all-solid-state batteries.

Abstract Image

用于全固态电池的高性价比一体化卤化物材料。
全固态电池需要先进的阴极设计来实现其高能量密度和经济可行性的潜力1-3。一体化阴极消除了非活性导电添加剂和异质界面,有望获得大量能量和稳定性增益,但由于材料缺乏足够的Li+/e导电性、机械稳健性和结构稳定性而受到阻碍4-14。在这里,我们提出了Li1.3Fe1.2Cl4,一种具有成本效益的卤化物材料,克服了这些挑战。利用其框架内可逆的Fe2+/Fe3+氧化还原和快速的Li+/e-输运,Li1.3Fe1.2Cl4与Li+/Li相比,电极能量密度达到529.3 Wh kg-1。关键是,Li1.3Fe1.2Cl4在循环过程中表现出独特的动态特性,包括可逆的局部铁迁移和赋予自愈行为的脆性到延性转变。这使得电池具有优异的循环稳定性,以5℃的速率在3000次循环中保持90%的容量保持率。Li1.3Fe1.2Cl4与富镍层状氧化物的集成进一步将能量密度提高到725.6 Wh kg-1。通过利用一体化卤化物优越的动态力学和扩散特性,本研究将一体化卤化物作为下一代全固态电池中能量密集、耐用的阴极的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信