Geometry of orofacial neuromuscular signals: speech articulation decoding using surface electromyography.

Harshavardhana T Gowda, Zachary D McNaughton, Lee M Miller
{"title":"Geometry of orofacial neuromuscular signals: speech articulation decoding using surface electromyography.","authors":"Harshavardhana T Gowda, Zachary D McNaughton, Lee M Miller","doi":"10.1088/1741-2552/ade7af","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>In this article, we present data and methods for decoding speech articulations using surface electromyogram (EMG) signals. EMG-based speech neuroprostheses offer a promising approach for restoring audible speech in individuals who have lost the ability to speak intelligibly due to laryngectomy, neuromuscular diseases, stroke, or trauma-induced damage (e.g. from radiotherapy) to the speech articulators.<i>Approach.</i>To achieve this, we collect EMG signals from the face, jaw, and neck as subjects articulate speech, and we perform EMG-to-speech translation.<i>Main results.</i>Our findings reveal that the manifold of symmetric positive definite matrices serves as a natural embedding space for EMG signals. Specifically, we provide an algebraic interpretation of the manifold-valued EMG data using linear transformations, and we analyze and quantify distribution shifts in EMG signals across individuals.<i>Significance.</i>Overall, our approach demonstrates significant potential for developing neural networks that are both data- and parameter-efficient-an important consideration for EMG-based systems, which face challenges in large-scale data collection and operate under limited computational resources on embedded devices.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ade7af","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.In this article, we present data and methods for decoding speech articulations using surface electromyogram (EMG) signals. EMG-based speech neuroprostheses offer a promising approach for restoring audible speech in individuals who have lost the ability to speak intelligibly due to laryngectomy, neuromuscular diseases, stroke, or trauma-induced damage (e.g. from radiotherapy) to the speech articulators.Approach.To achieve this, we collect EMG signals from the face, jaw, and neck as subjects articulate speech, and we perform EMG-to-speech translation.Main results.Our findings reveal that the manifold of symmetric positive definite matrices serves as a natural embedding space for EMG signals. Specifically, we provide an algebraic interpretation of the manifold-valued EMG data using linear transformations, and we analyze and quantify distribution shifts in EMG signals across individuals.Significance.Overall, our approach demonstrates significant potential for developing neural networks that are both data- and parameter-efficient-an important consideration for EMG-based systems, which face challenges in large-scale data collection and operate under limited computational resources on embedded devices.

口面神经肌肉信号的几何结构:使用表面肌电图解码语音发音。
目的:在本文中,我们介绍了使用表面肌电图(EMG)信号解码语音发音的数据和方法。基于肌电图的语音神经假体为因喉切除术、神经肌肉疾病、中风或创伤性损伤(如放疗)导致的语音发音丧失能力的个体提供了一种很有前途的恢复可听语言的方法。方法。为了实现这一目标,我们从面部、下颌和颈部收集肌电图信号,作为受试者的清晰语音,并进行肌电图到语音的翻译。研究结果表明,对称正定矩阵流形是肌电信号的自然嵌入空间。具体来说,我们使用线性变换对流形值肌电数据进行代数解释,并分析和量化肌电信号在个体之间的分布变化。总体而言,我们的方法显示了开发数据和参数高效的神经网络的巨大潜力,这是基于肌电图的系统的一个重要考虑因素,该系统面临大规模数据收集的挑战,并且在嵌入式设备上有限的计算资源下运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信