Animal models for enterovirus 71: Mechanisms, immunity, and applications.

IF 3.5 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Human Vaccines & Immunotherapeutics Pub Date : 2025-12-01 Epub Date: 2025-06-24 DOI:10.1080/21645515.2025.2523109
Zhenzhuang Zou, Jiaying Liu, Li Fu, Yuexian He, Guozhen Cui, Bo Huang
{"title":"Animal models for enterovirus 71: Mechanisms, immunity, and applications.","authors":"Zhenzhuang Zou, Jiaying Liu, Li Fu, Yuexian He, Guozhen Cui, Bo Huang","doi":"10.1080/21645515.2025.2523109","DOIUrl":null,"url":null,"abstract":"<p><p>Enterovirus 71 (EV-A71) is a leading cause of hand, foot, and mouth disease (HFMD) in young children and is associated with a risk of severe neurological complications. Although inactivated vaccines ae available, their limited cross-protective efficacy and the lack of approved antiviral treatments highlight the need for robust animal models to investigate viral pathogenesis and evaluate therapeutic interventions. This review provides a comprehensive overview of current EV-A71 animal models, particularly focusing on murine systems, and their applications in understanding disease mechanisms, supporting vaccine development, and developing antiviral strategies. The use of various EV-A71 strains, including clinical isolates, mouse-adapted strains, and infectious clones, in conjunction with rodent models such as BALB/c, ICR, and C57BL/6 neonatal mice, is examined. Additionally, transgenic, immunodeficient, and hybrid mouse models are also discussed for their ability to simulate key clinical features of infection, such as neurotropism, paralysis, and mortality. These models are indispensable for advancing therapeutic and vaccine research in pediatric infectious diseases.</p>","PeriodicalId":49067,"journal":{"name":"Human Vaccines & Immunotherapeutics","volume":"21 1","pages":"2523109"},"PeriodicalIF":3.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Vaccines & Immunotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/21645515.2025.2523109","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enterovirus 71 (EV-A71) is a leading cause of hand, foot, and mouth disease (HFMD) in young children and is associated with a risk of severe neurological complications. Although inactivated vaccines ae available, their limited cross-protective efficacy and the lack of approved antiviral treatments highlight the need for robust animal models to investigate viral pathogenesis and evaluate therapeutic interventions. This review provides a comprehensive overview of current EV-A71 animal models, particularly focusing on murine systems, and their applications in understanding disease mechanisms, supporting vaccine development, and developing antiviral strategies. The use of various EV-A71 strains, including clinical isolates, mouse-adapted strains, and infectious clones, in conjunction with rodent models such as BALB/c, ICR, and C57BL/6 neonatal mice, is examined. Additionally, transgenic, immunodeficient, and hybrid mouse models are also discussed for their ability to simulate key clinical features of infection, such as neurotropism, paralysis, and mortality. These models are indispensable for advancing therapeutic and vaccine research in pediatric infectious diseases.

肠病毒71的动物模型:机制、免疫和应用。
肠病毒71型(EV-A71)是幼儿手足口病(HFMD)的主要病因,并与严重神经系统并发症的风险相关。虽然有灭活疫苗,但其交叉保护作用有限,且缺乏经批准的抗病毒治疗方法,因此需要建立健全的动物模型来研究病毒发病机制和评估治疗干预措施。本文综述了目前EV-A71动物模型,特别是小鼠模型,以及它们在理解疾病机制、支持疫苗开发和制定抗病毒策略方面的应用。研究了各种EV-A71菌株(包括临床分离株、小鼠适应株和感染性克隆)与啮齿类动物模型(如BALB/c、ICR和C57BL/6新生小鼠)的使用情况。此外,还讨论了转基因、免疫缺陷和杂交小鼠模型,因为它们能够模拟感染的关键临床特征,如嗜神经性、瘫痪和死亡率。这些模型对于推进儿科传染病的治疗和疫苗研究是不可或缺的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Vaccines & Immunotherapeutics
Human Vaccines & Immunotherapeutics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-IMMUNOLOGY
CiteScore
7.90
自引率
8.30%
发文量
489
审稿时长
3-6 weeks
期刊介绍: (formerly Human Vaccines; issn 1554-8619) Vaccine research and development is extending its reach beyond the prevention of bacterial or viral diseases. There are experimental vaccines for immunotherapeutic purposes and for applications outside of infectious diseases, in diverse fields such as cancer, autoimmunity, allergy, Alzheimer’s and addiction. Many of these vaccines and immunotherapeutics should become available in the next two decades, with consequent benefit for human health. Continued advancement in this field will benefit from a forum that can (A) help to promote interest by keeping investigators updated, and (B) enable an exchange of ideas regarding the latest progress in the many topics pertaining to vaccines and immunotherapeutics. Human Vaccines & Immunotherapeutics provides such a forum. It is published monthly in a format that is accessible to a wide international audience in the academic, industrial and public sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信